Strategic Reasoning with Artificial
Intelligence

(CARDIFF

UNIVERSITY

PRIFYSGOL

(AFRDY[

CM3203 - One Semester Individual Project (40 Credits)

Jacob Berg

Supervised by
Dr Federico Cerutti

Moderated by
Dr Matthew Morgan

Abstract

This project follows the development of a variation of chess in which players only
have partial information of the game. This version of chess is called kriegspiel
and relies on an independent third party to oversee the game, which is where the
issue of trust and potential cheating arises. The design process and architecture
of the system are explained and a brief overview of how to run the software is
provided.

The project aims to discover how feasible cheat detection is within games of
partial information and more specifically, within the game of kriegspiel. If the
findings of the project find o feasible strategy, this methodology will be used to
implement such a feature within the gome implementation.

Acknowledgements

| would like to thank my supervisor for this project, Dr. Federico Cerutti, for his
assistance throughout this project. More specifically, for his guidance when
deciding which Al methods to investigate, helping to adapt the project so that it
would be suitable for my degree specification and his assistance with making my
expectations of the project more realistic.

I'd also like to thank my parents and family for forever pushing me to do my best
in the work that | do and for encouraging me to come to university when | was
doubting my own abilities to do so.

Table of Contents

Abstract 1
Acknowledgements 2
Table of Contents 3
Table of figures 4
Introduction 6
Background 7
kriegspiel 7
Algebraic Chess Notation and the PGN format 8
Existing Solutions 10
Approach n
Requirements 1
Design of the system 12
Possible methods of cheating 21
Investigating methods of cheat detection - The Markov Decision Process 23
Applying MDP to kriegspiel 26
Implementation 34
Results and Evaluation 42
Future Work 48
Conclusions 50
Reflections on learning 51
References 53

Table of figures

Figure 1 The game of kriegspiel being played 7

Figure 2 Chess moves represented in algebraic chess notation 9

Figure 3 An exomple of o game in PGN 10
Figure 4 UML class diagraom of the system 13
Figure 5 The RefereeQOutput class 15
Figure 6 The LegalMove class 15
Figure 7 The Okay class 15
Figure 8 The white king in diagonal check 16
Figure 9 The white king in Knight check 17
Figure 10 The white king in row check 17
Figure N The white king in column check 17
Figure 12 The white king in check mate 18
Figure 13 The coordinates system of the goame board 19
Figure 14 An exaomple of a rook’s move list 19

Figure 15 The pawn’'s move list, depending on whether it is assigned to either the black or 20

white player
Figure 16 A white pawn's move list on it's first move 20
Figure 17 A white pawn’s move list when an attacking move is being performed 21
Figure 18 An example of a rook making a move that should be blocked by the bishop 22
Figure 19 The difference between the outcomes of an agents actions in stochastic and 24
deterministic worlds.
Figure 20 An example set of chess states 25
Figure 21 An example set of actions in chess 25
Figure 22 A simplified version of the game in its initial state 26
Figure 23 An example set of states 27

Figure 24

Figure 25

Figure 26
Figure 27
Figure 28
Figure 29

Figure 30

Figure 31
Figure 32
Figure 33

Figure 34

Figure 35
Figure 36
Figure 37

Figure 38
Figure 39
Figure 40
Figure 41

Figure 42

Figure 43

An example set of actions

An example of a transition function when performing the action c3->c2 in state
(c3, a)

Attempting to visualise the MDP of the simplified problem
Diagrom of opening 2 moves, where the player moves (c3->c2)
Diagram of opening 2 moves, where the player moves (c3->cl)
Available arguments for kriegspiel.py

An example of the default chess layout (boards/default_layout.txt) in the format
accepted when loading game boards into kriegspiel.py

The Kriegspiel __init__ function
The Kriegspiel.do_move() function
The Rook closs

Assigning pieces the correct symbol in the ChessPiece.__init_{() function, based
on its colour and whether or not chess symbols are selected

The Pown class
The board builder application for creating game boards
Saving a custom board layout

Functions within the Board class for accessing/changing cells on the game
board

The get_board_for_player() function of the Kriegspiel class that retrieves the
board from a player's perspective

The game of kriegspiel being played
A castling move
En passant move

A promotion of a pawn into a queen

27
27

29
31

32
34

37
38
39
39

40
41

41

43

44
45
46
47

Introduction

Project Aims

The aim of this project will be attempting to solve is the issue of cheating in the
game of kriegspiel. Cheating is possible in kriegspiel because it is a game of
partial information, meaning that you must rely on an independent 3rd party to
act as a referee and enforce the rules fairly between you and your opponent. In
the game of kriegspiel, you cannot see your opponent’s pieces so the referee
must give feedback to players whenever a move is made. Because of this this
partial information, it makes it very difficult to know whether or not the game is
being played fairly and you must place a level of trust on the referee. If the referee
were to consort with your opponent to cheat against you, how could you possibly
know? This is the exact issue that we will be exploring throughout this project. We
will take the partial information that is given to the player and investigate how
artificial intelligence may be able to detect if there is any foul play. Artificial
intelligence could be a very powerful and useful tool for this task because there
may be ways of saving all of the partial information given by the referee and
using it to calculate if something abnormal has happened. Throughout this
project, the possibility of using Al to solve this problem will be explored.

The project will also be aiming to create an open-source implementation of
kriegspiel, to be released under MIT license [1] so that other people can make
changes and use it for their own purposes, whilst also being able to share their
versions with others. The implementation should be well documented and follow
standard software design practices so that it will be easy to understand and
modify where necessary.

Project Outcomes

The project should result in having a functioning implementation of kriegspiel
which includes easily readable, documented code that is under an open source
license.

Investigations into a cheat detection system will be carried out and the feasibility
of such a system will be measured. If a feasible strategy is found, this system
should be integrated with the implementation of kriegspiel.

Background

kriegspiel

kriegspiel is a variation on the game of chess in which players can only see their
own pieces and cannot see their opponents. This quirk turns the game of chess
into a game of partial information, meaning that the player must make
assumptions on the current state of the game and attempt to deduce where the
opponents pieces are. This variant of the game requires a third person to act as
o referee to oversee gaomeplay and ensure that the rules are being enforced. It is
also the job of the referee to provide information about the game to players, such
as when a piece is captured. When a move is attempted, the referee decides if it is
a legal move and informs both players of what has happened. The referee can
give statements whenever a piece is token, when a player is put into check or
whenever a move is attempted that is not possible. When an illegal move is
attempted, the referee simply says “blocked”, meaning that the move was
unsuccessful. When an illegal move is attempted, the player can retry their turn
until a legal move is chosen. When a piece is taken, the referee will state what cell
the piece was taken from but will not announce the type of piece. The player
whose piece was taken is aware of which piece was taken but the attacking player
has to either guess or deduce which piece they have captured. When a player is
in check, the referee will specify what type of check it is, such as “check on
column®, “check on row", “check by knight's move"’, “‘check on diagonal” or
“‘checkmate”. The player is not informed of what piece is putting them in check,
unless it is a knight due to their unique movement, or what cell the attacking
pieceisin.

B ¥ @ 4 & B B ¥ @ 4 & B
i i & i i i i & & &
i #® i £
i i
5 B8 g it g & it &
E E
B B B B B B B B A B8 g &
E 2 8 & a e E 2 & & 2 e
Full game board Player one's perspective Player two's perspective

Figure I: The game of kriegspiel being played

Due to the nature of the game, the referee is required to be impartial, meaning
that they must ensure both players are following the some set of rules and neither
has an advantage over the other. In a case where the referee and a player are
consorting to cheat against the other player, it is very difficult for the cheated
player to know that the game is unfair. This is because players are only aware of
where their own pieces are and they must get additional information from the
referee. The player has limited knowledge about the state of the game which
means that there are many ways in which the referee could allow an opponent to
cheat without the player ever being aware.

The trust issues of kriegspiel are an important problem because they can be
applied to real world situations where two people are required to rely on a
supposedly independent third party. For example, if o person is attempting to
transfer money to another via a third-party service. Both people need to be able
to trust that the money will be paid and that the third-party will not tamper with
the transaction. Any problem with partial information has this issue because the
agents involved can't be sure of what is actually happening and must rely on what
little information they have to piece together the truth about the world they are
in.

Finding a way to prove that the third-party is consorting with someone to illegally
gain an advantage can be very difficult and an important issue. The problem is
present in any situation with partial observability of events and the reliance on a
third party. If a solution can be found for this problem then this could lead to a
solution for real world issues where trust is involved.

kriegspiel was chosen as a platform for this problem because chess is a gome
that most people are somewhat familiar with and this variant of the game only
has one major difference, being that you cannot see your opponents pieces. By
using kriegspiel, it also means that the game can feasibly be implemented in a
reasonable time and additional features that can aid with solving this problem
can be included. The problem itself can be quite easy to explain when applied to
the game and it helps to illustrate just how difficult and important it can be to
solve.

Algebraic Chess Notation and the PGN format

Portable Game Notation format (PGN) [2] is the standard format used to store
games of chess. This file format is designed to be both easy for humans and

computer programs to read and write. Moves are written using algebraic chess
notation (AN) [3], which show which piece was being moved, as well as the
destination and whether a capture was made. The first letter in the move
represents the piece being moved, which is symbolised by the first letter of the
piece name, with the exception of the Knight, which is represented by N due to the
king already being represented by K. If no piece is indicated in the move then it is
assumed to be a pawn move. For example, the move “Rc3" represents a rook being
moved to the cell c3. If a piece is captured then an “X" is included after the piece
and before the cell, e.g “Rxc3". Each of the possible chess moves can be

represented using AN:

Move AN symbol Usage
Move None Rc3
Caopture X Rxc3
Promotion Q e8=Q
Check + +
Checkmate # #
Comments : : This was a move...
Caostling (kingside) 0-0 0-0
Castling (queenside) 0-0-0 0-0-0
Black win 0-1 0-1
White win 1-0 1-0
Draow Yo-V4 Yo=Y

Figure 2: Chess moves represented in algebraic chess notation

Gomes represented in PGN feature several details about the game at the start of
the file. These are enclosed by square brackets [] and include information such
os the names of the players involved, their respective piece colours, the date the
game took place and the end result.

[Event "F/S Return Match"]
[Site "Belgrade, Serbia JUG"]
[Date "1992.11.04"]

[Round "29"]

[White "Fischer, Robert J."]
[Black "Spassky, Boris V."]
[Result "1/2-1/2"]

1. e4 e5 2. Nf3 Nc6 3. Bb5 a6 4. Bad Nf6 5. 0-O Be7 6. Rel b5 7. Bb3 d6 8. c3
0-0 9. h3 Nb8 10. d4 Nbd7 11. c4 c6 12. cxb5 axb5 13. Nc3 Bb7 14. Bg5 b4 15.

Nbl h6 16. Bh4 c5 17. dxe5 Nxed4 18. Bxe7 Qxe7 19. exd6 Qf6 20. Nbd2 Nxd6 21.
Nc4 Nxc4 22. Bxc4 Nb6 23. Ne5 Rae8 24. Bxf7+ Rxf7 25. Nxf7 Rxel+ 26. Qxel Kxf7
27. Qe3 Qg5 28. Qxg5 hxg5 29. b3 Ke6 30. a3 Kd6 31. axb4 cxb4 32. Ra5 Nd5 33.
f3 Bc8 34. Kf2 Bf5 35. Ra7 g6 36. Ra6+ Kc5 37. Kel Nf4 38. g3 Nxh3 39. Kd2 Kb5
40. Rd6 Kc5 41. Ra6 Nf2 42. g4 Bd3 43. Re6 1/2-1/

Figure 3: An example of a game in PGN [2]

Existing Solutions

There is already an open-source versions of kriegspiel available which is written in
javascript [4]. This implementation has additional features such as play over a
network, the ability for users to have accounts and a graphical browser based
user-interface. These extra features make the implementation more complex than
is required for this project, so could maoke extending the implementation more
difficult than a simpler version of the gome. This implementation doesn’t have any
dedicated documentation available and the in-code comments don't provide
much insight into how the code functions. The time spend deconstructing and
understanding the code would be costly because of this so it will not be used for
this project.

10

Approach

Requirements

The first step of the project was to decide on the requirements that the
implementation of kriegspiel should satisfy. A strong framework for the game
would be very important to implement before any sort of cheat-detection could
be implemented. To aid in this task, a list of requirements was compiled.

e The implementation needs to be open-source because the code of this
project is required to be released under MIT license. [1]

e The implementation should preferably be written in either python or java.

e The implementation should allow users to play the game of kriegspiel, as
defined [5]

e The implementation should allow me to easily poll the game board to get
piece locations and access the outputs of the referee. This will eliminate
any potentiaol additional overheads such as needing to use
image-recognition to find piece locations in a graphical implementation of
the game.

e The game should have a simple text based interface. A grophical user
interface could be more user-friendly but is not necessary.

e Documentation should be provided for any code involved

e It would be desirable to be able to view games in the PGN format

Once the requirements were defined, we began by first implementing chess and
then making modifications to this to create o functioning version of kriegspiel.
Chess is a game that we are familiar with so it was logical to first implement that
ond then carry out testing to ensure that the chess aspect of the gome was
functioning correctly before adding the additional, more complex features that
would be required for kriegspiel.

Python 3 was chosen as the language for the project because it was a familiar

longuage and therefore would be the quickest to use for the implementation. This
meant more time could be focused on the design of the system, rather than

1

spending time trying to learn a different language. Python also has existing
modules available that could potentially be useful when using Al for the cheat
detection. [6] [7]

Design of the system

The design of the system uses an object-oriented approach for this problem
because there are multiple different objects in the real world version of kriegspiel
that can be logically mapped to closses.

By using this object-oriented design, the system had to be thoroughly designed
before development could begin. This helped to ensure that the classes would
interact with each other logically and no core-functionality would be missing. This
approach also makes the maintenance of code much easier because functions
are logically contained within classes that they are relevant to.

The chess pieces all have the same general purpose in the gome, so it is logical
for them to inherit from one parent class which handles the functions that all of
the pieces should be able to perform. By using this approach, the chess piece
code could be re-used for all of the different piece types and helped prevent
large amounts of repetition whilst also allowing the general chess piece
behaviour to be changed simply by altering the parent class if required.

As with the chess pieces, the referees, players and the referee outputs all inherit
from their respective parent classes. This allows new referees, players and outputs
to be added to the game relatively easily by simply creating a new class that
inherits from the appropriate base class. As an example of this, there is an
additional referee class, LaxxReferee, that simulates a referee that doesn’t enforce
any rules on the game. This inherits from the base Referee class and overrides the
is_move_legal() function to always return true instead of evaluating if a move is
actually legal. This is the only change made to this class but still maintains all
other functionality of a normal referee, due to the inherited functions and
ottributes, without having to re-write any other code.

12

Player

p—

-~ do_moveiioxd Eaard) b L2 plays
oyt _cupul Referoeutpi Nane

HumanPlayer mu..no.:!nwﬁ

e
1

defects cheating for
1

CheatAnalyser

« Disos_values” dict
+ rel_oupets_ st

Krizgspiel

- playsn_1- Playee
« player_2 Piayer

«eteren Releree
+ board_ayout bt
+ use_symbels Bool

Board

+ beard. izt

+ B8t pecsiloe TpT ChassFigce

« oiind_Daarditype). Mone
oo gamaibnard tayoul fst) hene

+ move_psecaittom_cel %, to_ced i, playe_d - intf Nank

+ du_mave) Homa
ipityes - . Phsyee

+ opponent_idigay=_id int) it

+1n_letter_encrdmatesicsl ip): st

+ et_oomer_c2_pieceioc Wpl int
1 has 1 b
)+ cubis_framiice |) Soweun’

~ mowe_pecadiom_col - fup, fo_cel * hup, teplaceind =

+ pord_baardisha_key - Bood = False): Hana
+ loa_boalilayaut | kES, Noae

+ £ava_boasy fisd

0 Kanw

-~ At ot ulpul{autput - Rossmso Ol maves_maa int, acha | Booi=Faius]. Hone

ishe_net_ral_oupulive!_ctput - Retetee Outpart, mawes_maids * inty oo
« gel_score_for_boanionard. k

wyer_d ity int

RefereeOutput

1
stofes 6t g
\ + Mam_ce - wup
. “ho el g

| + adalional_tet: &
|+ oulpu ®utormocutpt ~tatiel 6t

| + moves_macs int

+ suncess - Book

-~ moves ssge ml

% has oulgin

oversees

!

N\

N

creates pisces for

Referee

~malhdtyre hpe
+ _mawe_impossbiedom_cel tup, to_oell - hup. beard | Boad, echo | Bool=Falze). Bool

Je_move_jegalieem ol L 1o, Cel up pRaYEe i | i, boand | Board, echo | Falge) Boal
1|+ vesty_movehiom _ced | hap, e _cel fup Doare Boed, player s, player_name si=Hone: echn Boce=Fatse) PelereeOupul
+5_IN_check_maeipiayer_in | int, boang - Board. acho - BealFasay Bosl
+ _game_overplayer_id - inl, basid - Baard) Sool
int, bawe . Board, #che . Soot=Fake) Buel

+in_checkipay
~i_méwe_beguteom _coll - tup fo_cel S, player s =i, boad - Hoard, etha - Booi=False) - Baal
-~ i5_patn_hlockadfrom_ceN: g, fa_cefl i, boand. Saard, echo: Boct-Faise) bosl

ChessPiece

+ qwmer i int
+ can_punp. b
ol]
contains

N

+ mowa_caunter int

B
™

PieceFactory

- pesce It

o prece(piecs. sty colour i, use symbel: boal): ChessPice

atter_to_symbolletier s calour - okl s

UML class diagram of the system

Figure 4

13

kriegspiel

This class handles the core loop of the game, as well as managing the players,
referee and gameboard. The kriegspiel object acts as a controller for the
movement of pieces and has access to all aspects of the game, including the
piece locations, the referee and notifying players of any statements made by the
referee.

Referee

Each kriegspiel gome requires one Referee object to be assigned to it. The Referee
class is responsible for enforcing rules in the gome and ensuring that it is played
fairly without any illegal moves being made. Without a referee, the kriegspiel game
will not work because it is not aware of the rules of the game. The base Referee
class enforces rules fairly for both players and allows the game to be played
normally.

CheatingReferee

The CheatingReferee class inherits from the base Referee class. This referee will
cheat with one of the players by allowing them to make moves that they should
not be allowed to but will still regulate the moves of the other player. This referee
works by always allowing the cheating player to make any move when it is their
turn, regardless of whether or not it is legal.

LaxxReferee
Inherits from the Referee class. This referee allows both players to maoke any
moves that they wish, without ever checking that they are legal.

RefereeOutput

RefereeOutput objects are output by the Referee of the gome when a player
aottempts to make a move. These give information about what the outcome of the
move was and contains additional information such as the text to give to the
player, whether or not it was legal, which cells of the gameboard were relevant and
the number of moves that have been made in the game. This base class is used
for general outputs and is used as a base class for the various outputs a referee
can give. This class overwrites the default object _str_ method to instead give
useful output when the object is printed instead of a reference to the object. By
using different classes for each of the different outputs a referee can give, the
players can evaluate the outcome of their move simply by checking the closs of
the object. If the details of the output such as the text given to the player need to
be changed then it can be done without affecting functionality.

14

class RefereeCutput():
def _ ipit_ (self, for _player, from_cell=None, to_cell=Nonz, moves_made=Hcne, additional_text="", *args, **kwargs):
self.label = Hone
self.for player = for_player
self.from_cell
self.to_cell =

self.success =

self.additional_text = additionsl_text

self.moves_made = moves_made

} - {1} {el".format{p=self.for_player, l=self.label, e=self.additional_text)

Figure 5: The RefereeQOutput class

LegalMove

Inherits from RefereeOutput. Used as a base class for outputs for when a move is
legal and that allow a player’'s move to take place. When a LegalMove object is
given by a referee, the kriegspiel gome makes the move for that player.

Figure 6: The LegalMove class

IllegalMove

Inherits from RefereeOutput. Used as a base class for outputs where a move was
disallowed for some reason. When an IllegalMove object is returned by the referee,
the move does not occur and the player that attempted to make the move is
prompted for o different one.

Okay
Inherits from LegalMove. This is given whenever a move is successful and a piece

was not taken.
Text: ‘Move was legal.”

class Okay{LegalMove
gef __imit_ (self, *args, **kwargs):
super{).__init (*args, **kwargs)
self.label = "Move was legal.”™

Figure 7: The Okay class

15

OkayTaken

Inherits from LegalMove. This is given when a move is successful and a piece is
taken.

Text: "Move was legal and a piece was taken.”

Blocked

Inherits from IllegalMove. This is given whenever a player attempts to make a
move that is illegal. Due to the way kriegspiel works, they player is not provided
with the reason that the move they attempted was illegal, they are only told that
the move is blocked.

Text: ‘Move is blocked”

Impossible

Inherits from IllegalMove. This output is given when a player attempts to make a
move that is impossible. Impossible moves are defined as trying to move a piece
to a location that is not in it's move-set (such as moving a pawn sideways) or
trying to move a cell that does not contain your piece. This is included to help
reduce confusion between whether a move is illegal because it is blocked, or if a
move would always be illegal.

Text: ‘Move is impossible.”

Check

Inherits from RefereeOutput. This class is used as a base class for the different
variants of check that a player can be put in. This output is never given by the
referee.

DiagonalCheck

Inherits from Check. Given when a player is put into check from a close diagonal.
Text: “You are in diagonal check.”

k-
]

Figure 8: The white king in diagonal check

16

KnightCheck
Inherits from Check. Given when a player is put into check via a knight.
Text: “You are in check by a knight”

Figure 9: The white king in knight check

RowCheck
Inherits from Check. Given when a player is put into check by a piece on the same

row.
Text: “You are in row-check”

Figure 10: The white king in row check

ColumnCheck
Inherits from Check. Given when a player is put into check by a piece on the same

column.
Text: “You are in column-check”

17

Figure T1: The white king in column check

CheckMate
Inherits from Check. Given when a player is put into a state of checkmate.
Text: “You are in checkmate”

[<

&
B

Figure 12: The white king in checkmate

GameOver

Inherits from RefereeOutput. Given when the goame has entered a gome-over state.
When given by the referee, the currents gome ends and the winner is announced.
Text: “Game over!”

Player

Base player class used for defining players of the game. Defines the methods that
players should have in order to play the game. Players are prompted for a move in
the form of 2-tuples representing the coordinates the cells they are moving from
and to. When prompted for a move, they are given the current state of the
gameboard from their perspective. l.e they are given the state of all of their own
pieces on the board. The player then should provide a move in the format
(from_cell, to_cell). If the move is successful, the piece is moved and the player's
turn ends. If the move is unsuccessful, the player is notified that the move was
blocked/impossible and they are prompted again for a move until a valid legal
move is given.

HumanPlayer

Inherits from Player class. Used for human players of the game. The board is
shown to the player when it is their turn to make a move. The player then provides
their move via command line input, in the format “from_cell to_cell*, where the cells
are provided in chess notation, such as “a5".

RandomPlayer

18

Inherits from Player class. This player makes a random move when prompted for
their turn. Makes any move that the referee will allows it to, meaning that if the
referee is cheating with this player, they are able to make any move randomly.

Board

Contains the board of the game as an 8x8 array. Has methods that allow the
manipulation of the gameboard, as well as handling of saving/loading boards.
Cells on the board can be referenced by coordinates (x, y) and can have their
contents accessed, changed or deleted. The origin (0, 0) of the board is the
upper-left corner and extends to the bottom-right corner (7, 7).

0,00 (1,0) (20) .. (70
070 (12 (23 .. (@7
07) 07) 27 . (7

Figure 13 : The coordinates system of the game board

ChessPiece

The base class used for all chess pieces in the gome and defines the method
is_legal_transform which checks if that piece is able to move from one cell to
onother based on the moves that that piece can make. Each type of chess piece
inherits from this class and the only difference between each is their legal
moveset, which is defined as a list of translation vectors. The pieces do not have
any data about the board or their position on it, they are only aware of which
directions they can move, their relevant chess symbol and the id of the player who
owns them.

Rook

As an example of how the chess pieces function, we will explore how the Rook
class functions. In chess, rooks are able to move up, down, left and right in a
straight line for any number of cells as long as the path is not blocked by any
other pieces. Within this implementation, the move list is represented by a list of
tuples (x, y), each of which is a translation vector which represents a legal
movement that the piece can make. For example, (0, 1) is a translation vector that
moves a piece one cell downwards, e.g from cell (4, 3) to (4, 4).

[(0,1), (0, 2),(0,3), ... 0,1, (0,-2), (0,-3), ... (1,0), (2, 0), (3, 0), ... (-1, 0), (-2, 0), (-3, 0), ... (-7, 0)]

Figure 14: An example of a rook’s move list

19

When a piece’s is_legal_transformation() method is called, the difference between
the from_cell and to_cell is compared to the translations stored in that piece’s
move list and if it is present, the move was legal for that piece.

The rook class stores it's chess symbols (€, X) for both teams as well as fallback
letters (R, r) which can be used in place if the unicode characters are
unsupported.

Each of the other chess pieces (King, Queen, Knight, Bishop) have their own
classes which function in the some way as this, with only their names, symbols
and move lists changing. However, the pawn class has some differences due to
the unique nature of the piece’s movement.

Pawn

The pawn is unique because it has different valid moves depending on whether or
not it is making an attack. Normally, the pawn can only move forwards one cell at
a time relative to the player who owns it, unless it is the pawn'’s first move in which
case it can move two cells. While attacking an opponent’s piece, a pawn can only
diagonally. These 3 cases all have different valid moves so the pawn’s move list
needs to change depending on which situation the pawn is in.

When a pawn object is created, the move list is generated dependant on the
player who it is assigned to. The move list needs to be different for each player
because the pawn can only move forwards, meaning that the move list is mirrored
between both players.

White: [(0, 1)1, Black: [(0, -1)]

Figure 15: The pawn’s move list, depending on whether it is assigned
to either the black or white player

Each piece keeps a counter of how many times it has been moved and if this
counter is at 0, and the pawn’'s move list will also include the translation vectors
that allow it to move forwards two spaces, as well as one.

[(0.1),(0,2)]

Figure 16: A white pawn’s move list on it’s first move

When a piece is checking if a move is in their moveset via the is_legal_transform|)
method, an “attacking” parameter can be set if the piece is performing an
ottacking move. When this is set, the move list for the pawn changes so that it can

20

only move diagonally. For all other classes of pieces, the attacking and regular
move list are the same.

(L0

Figure 17: A white pawn’s move list when an attacking move is being
performed

Possible methods of cheating

In order to attempt to detect cheating in kriegspiel, we must consider the
potential ways that the referee could cheat. By cheating, we mean that the referee
has allowed an action to happen that goes against the normal rules of kriegspiel.
The methods of cheating can be split into two categories: deceiving the player by
providing them with misinformation about the current state of the gome, and
allowing illegal moves to be made by either player. Taking care while cheating is
more important during the opening moves of play because the player has more
knowledge about the actual state of the game so it would be easier to spot any
discrepancies between the expected and current gome states.

Opponent moves piece to a location they aren’t able to

The referee allows the opponent to move a piece into a location that should be
either blocked or impossible. For example, a pawn could be allowed to be moved
horizontally across the board which is usually an impossible move. The referee
could also allow a move that should be blocked, such as allowing the opponent to
move a piece to a location that has a piece in its path. This clearly gives an unfair
advantage to the opponent as it means that they are no longer following the
rules of chess and they will be able to have pieces in unintended locations. If the
opponent is careless while cheating in this manner, it could potentially be easy to
detect. A situation where this could be easily detectable is if the player is put into
check within a few moves of the game beginning.

21

2

v

Figure 18: An example of a rook making a move that should be blocked by the
bishop

Referee allows the player to move a piece to a location that should be blocked
In a similar manner to allowing the cheating opponent to move pieces illegally,
the referee could also allow the player to move a piece to a location that should
be blocked. This has a different effect to allowing the opponent to move illegally
because the player is unaware that they are being cheated against, unlike the
opponent who is consorting with the referee. This method would deceive the
player into believing that there are none of their opponents pieces along that
path that they were able to move through.

Referee disallows a players move, claiming it is blocked, when it is actually a legal
move

The referee tells the player that they are unable to make a move due to it being
blocked, when in reality the move is legal. This deceives the player into believing
that the opponent has a piece in a cell blocking the path, whilst also preventing
the player from making their move. This is an effective method of cheating
because it gives the player incorrect beliefs about the current state of the game
and also stops them from moving their own pieces.

Referee doesn't tell a player when they have taken a piece

This form of cheating relies on providing the player with false information. The
player is led to believe that the cell that they moved to was empty and that the
opponent still has the some number of pieces but in actuality, the cell was
occupied and the opponent now has one less piece. This method could be
difficult to detect if it is used sparingly but if it was consistently committed then it
could be easily flagged if the player finds that they never take any of their
opponents pieces, even in moves where they know they should have.

22

Game starts in the non-standard layout - pieces could be in wrong locations or
with additional pieces

The player is both misled into believing the game is in a different state than it is
actually in and the opponent is also given an unfair advantage of having a
different starting configuration of pieces than the player. In the early stages of
the game, this could be easily detected if the opponent makes their moves
carelessly, such as capturing the player's pieces that shouldn't be reachable yet
under normal play.

Referee tells player that they are in check when they aren't

This is another method of cheating that relies on misleading the player into
believing the game is in a different state than it actually is. This method could be
relatively easy to detect because the player is always aware of where their own
king is and they can deduce where the opponents piece supposably is by
ottempting to move out of check. This also restricts the player's available moves
for the turn that they are in check, due to them only being able to make moves
that would take them out of check.

Referee tells opponent the locations of the players pieces

This is a different form of cheating that would be impossible to detect due to the
player receiving no information regarding this. This method of cheating would
also be impossible to prove because all moves made in the game could be legal
ond the game could possibly never enter an abnormal state.

In order to simplify the problem and make it easier to understand, we will
consider only cheating methods that allow the game to enter a state which
should be impossible under normal fair play, such as when the referee allows the
opponent to move a piece illegally. This type of cheating should be easier to
detect because there may be methods of checking if the game enters a state that
would otherwise be impossible under fair play.

Investigating methods of cheat detection - The Markov Decision
Process

The Markov Decision Process (MDP) is a method of modelling non-deterministic
worlds in which an agent’'s actions have probabilistic outcomes. In a
non-deterministic world, an agent's actions can have a number of different
outcomes and we cannot be sure which will occur. In figure 19, we can see that in a
deterministic world there is a 100% chance that if the agent makes an action to
move upwards that they will move upwards. However, in the stochastic
(non-deterministic) world, there is a chance that the agent will either move up, left

23

or right even when attempting the same action. MDPs help to decide which
actions an agent should make in a given state in order to achieve some goal.

Deterministic World Stochastic World

=t =%

— m-

Figure 19: The difference between the outcomes of an agents actions in stochastic
and deterministic worlds. (adapted from [8])

MDPs may be useful for the game of kriegspiel because it is a game of
partial-information, meaning that we have uncertainty of the current state of the
game and what the opponent’s moves are. This means that the world of kriegspiel
can be defined as stochastic and therefore MDPs may be used to model it
effectively.

The Markov decision process has been applied to games of partial information
such as poker [10]. This particular application is utilizing MDP to play poker and
aottempt to win, which is different from the application we are attempting which is
to detect cheating. This is a good indication that MDP can be applied to games
like this and could work well as a solution to this problem.

Before exploring how MDPs may be used to help solve the problem of cheating in
kriegspiel, we must define what an MDP is.

An MDP can be defined by 5 components being the states, actions, transitions,
rewards and discount factor. [10]

A set of states

24

The set of states is defined as a finite set {s', % s°, ..., s} which contains all of the
possible unique states in a given world. A state is a single possible reality in a
given world such as the positions of pieces on a chess board.

glafafe(w[a]az = glelalaz [[&]2
Blalaala|ala|s [&] [a] [aafa]s
AR S
& Il a
i 8
3 a ® B
s|@|e|ale|@|sfu] || [8]elalafEl | | | P

{ §|@}g|@}@|;@,\@|g\,J@ ile|w|a]| [z

Figure 20: An example set of chess states

A set of actions

The set of actions is defined as a finite set {a, a2, a¥, ..., o} which contains all of
the unique actions that can be made by an agent in a world.

Actions are things that an agent can do in a given state in order to move to
another state. For example, when an agent is in state s, it could perform action @'
to move to another state s? In chess, an action could be defined as moving a
piece from one cell to another.

{(a1->a2), (a1->a3), (a1->a4), ... }
Figure 21: An example set of actions in chess

A transition function

The transition function gives the probability of moving from one state to another,
when performing a given action. The function takes 3 parameters T(S, A, S') and
returns a 0 < value <1, which is the probability of moving to state S, when
performing action A in state S.

A reward function

The reward function, which can be either defined as T(S) or T(S, A), gives a reward
value for being in a given state or when performing an action while in a state.
Rewards are used to measure how desirable it is for an agent to be in a given
state or for them to perform an action in a state. Usually rewards are used as a
means of defining how close the agent is to achieving their final goal.

25

A discount factor

Discount factor is a value 0 £y < 1which is used to increase the value of rewards
that are gained sooner and decrease the value of rewards gained later. A
discount factor can be set to Tif it is not required, so it will not have an effect on
the reward values. It can also be set to 0 if only immediate rewards should be
considered. Discount factor can also be used as a method of ensuring that the
reward of a system is a finite number, even in situations where the world is not
finite.

Applying MDP to kriegspiel

To investigate the usefulness of MDP for the kriegspiel problem, we can take a
simplified version of the problem and apply this methodology. By doing this, it
makes the problem much easier to visualise and allows the concept to be tested
without needing the additional complexity of the entire game. To simplify the
problem, we will consider a 3x3 game board with only two pieces, one rook for
each player starting in opposite corners of the board.

3 E
2
1 B

a b ¢

Figure 22: A simplified version of the game in its initial state

Formalising this version of the game

States

The states of this simplified problem can be defined as all possible configurations
of the pieces on the board. These can be stored in the format (r1, r2), where rl are
the coordinates of the white rook, and r2 are the coordinates of the black rook.
For example, the starting state of the game would be encoded as (c3, al). Using
this method results in there being a total of 90 states when including the 72
configurations of two pieces, 18 game-over states in which there is only one piece
and ignoring the impossible state of zero pieces on the board. A state with only
one piece can be represented by using a dash in the place of that piece's
location, such as (-, ¢2),

{(c3, al), (c2, al), (63, a3), ... }

26

Figure 23: An example set of states

Actions

Actions can be defined as moving a piece from one cell to another. In this version
of the game, we will only be considering the rook, so the number of actions is
limited only to those that move directly up, down, left or right by either one or two
cells. Actions can be encoded as a tuple (c1->c2) where cl is the start position of a
piece and c2 is the new position of the piece.

{(c3->c2), (c3->cl), (c2->c3), (c2->cT) ... }
Figure 24: An example set of actions

Transition function

The transition function depends on knowing the probability of ending up in
another state, when performing a given action in a given state. Given that
whenever a player makes a move, they will always have 4 possible moves that they
can attempt regardless of where they are on the board. For example, if the player
is in the middle cell (b2), they can only move up (b3), down (b1), left (a2) or right (c2).
By using this information and by using the assumption that the opponent will
maoke a random move, there will be 4 possible states when performing an action
once the opponent also moves, each with an equal 0.25 chance of occuring. We
consider the probability of being in a given state after the opponent has also
made their move due to their move being the uncertain aspect of the action.

T(S1, A S2)
T ((c8, al), (c3->c2), (c2, a2)) =0.25
T ((c3, al), (c3->c2), (c2, a3)) =0.25
T ((c3, al), (c3->c2), (c2, bl)) =0.25
T ((c3, al), (c3->c2), (c2, c1)) =0.25
T ((c3, al), (c3->c2), (c1,a2)) =0.00

Figure 25: An example of a transition function when performing the action c3->c2
in state (c3, al)

Reward function

A basic reward function for chess is to simply look at all pieces on the board and
sum-up their values [11]. Each piece has different levels of utility and as such, has
a different value. A commonly used model is pawn=1, queen=9, rook=5, knight=3
ond bishop=3. The king is not given a value as the game immediately ends if
either players’ king is taken. In this simplified version of the game, a reward

27

function is not necessary as each player will only have at most one piece when
the game is in play.

Discount factor
For this model, a discount factor will not be used.

Visualising the MDP

Problems formalised as MDP can be visualised as diagrams that illustrate the
states, actions, transition probabilities and rewards. Nodes of the graph
represent both states and actions.

In order to help understand the problem of cheating in kriegspiel, we can create a
diagram for the simplified version of the game that we outlined previously on
page 25. While doing this, we can see that the problem gets unmanageable very
quickly, even when looking at such a drastically simplified problem that has only
90 possible states. The gome tree grows very quickly and keeping track of the
problem in this way becomes difficult. The branching factor of this simple gome is
4 because there is always 4 possible moves that a player can make, each resulting
4 possible states depending on what move the opponent makes. A normal game
of chess has a branching factor on average of 35 due to their being on average
35 legal moves that can be made in any state of chess. [12] This increased
branching factor indicates that visualising the entire game tree in this manner is
seemingly unfeasible.

28

Figure 26: Attempting to visualise the MDP of the simplified problem

With this simplified version of the game, we can began to consider how MDP could
potentially be used to solve the problem. After making one move, we know that the
game can be in one of four possible states if the game is being played legally. If
we discover that the game isn't in one of these states then we know that the rules

of the game have been broken. To explore this further, we will look into a specific
example of this:

If we are playing as the white piece and the game starts in the state (c3, o), there
are four possible legal moves available { (c3->c2), (c3->c]), (c3->b3), (c3->aJ) }. If we
make the move (c3->c2), the game is now in the state (c2, al), which we can assume
is true as long as the game began legally in the starting state. After the opponent
makes their move, which can legally be one of { (a1->a2), (a1->a3), (al->b]), (al->c1) },
the game can now be in one of four possible states { (c2, a2), (c2, a3), (c2, bl), (c2,

29

c}. Now it is the players turn and we can attempt to verify that the game is in one
of the legal states. To do this, we can attempt to move to a location that we know
the opponent cannot be in. If we attempt to make the move (c2->a2), the referee
can give 3 possible outputs being either “Okay", “Okay, piece taken” or “Blocked".
We know that the opponent cannot possibly be blocking the move because they
can only be in the cells a3, a2, b1 or c1 and for the move to be blocked, there
would need to be a piece in cell b2. Therefore, if the referee states that the move is
blocked then we can be sure that the opponent has been allowed to cheat and
make an illegal move. If either of the remaining outputs are given, we cannot be
sure that any cheating has occurred.

Another possible check we could make would be to make the move (c2->c3). We
know that the opponent’s piece can't be in the cell ¢3 so if the referee gives the
output “Okay, piece taken’, then the opponent has been allowed to move their
piece illegally.

The opponent could also make a cheating move to c2, which would capture the
player's piece and end the game. This move is trivial to detect because there is no
possible way for the opponent to capture the player's piece at this stage of the
game and the player isn't required to make their move to detect this.

From these possible checks the player could make on their turn, there is a chance
that the opponent’'s cheating will be detected if they illegally move to either b2 or
c3 in their first move. However, the opponent could potentially cheat by moving to
the cell b3 or remain in the cell c1 In these two cases, there is no way for the player
to verify that an illegal move was not made because the player is unable to move
to these cells on their following turn.

30

3 B Players

rgve Opponents
2 c3->c2 2 move
18 —> 8

Legal Moves .
lllegal Moves .

Figure 27: Diagram of opening 2 moves, where the player moves (c3->c2)

We can see that in the first 2 moves of the game, the opponent can make 9
possible moves, 5 of which are illegal. We are potentially able to detect 3/5 of
those possible cheating moves that the opponent could make. These remaining 2
illegal moves are undetectable at this stage of the game, assuming the player is
forced to play by the rules.

We can use this to calculate the percentage of the player detecting a cheating
move from this state. If we assume that the player is moking o random move of the
4 legal moves available and that the opponent is making a random cheating
move.

P(detect cheat (a1->c2)=1/5*1=1/5

P(detect cheat (a1->b2)) =1/5 * 2/4 =1/10

P(detect cheat (01->b3)) =1/5 * 0 = 0 (impossible to detect)
P(detect cheat (a1->a1)) =1/5 * 0 = 0 (impossible to detect)
P(detect cheat (a1->c3)) =1/5*1/4 =1/20

31

By taking the sum of these probabilities, we find that the probability of the player
detecting a cheating move on their second turn, given that the first move was
(c3->c2), the opponent makes a random cheating move and the player chooses
their second move at random is 7/20. This probability is the same if the player
makes the move (c3->b3) on their first turn, due to it being a mirror move of
(c3->c2). By taking mirror moves into account, we can reduce the search space for
this problem. If we do this, the first move the player can maoke can be considered
as only having two choices which is for them to move either one cell or two cells to
the left or downwards.

We have considered the chance of detecting a cheating move when the player
makes a move one cell on their first turn. Now we will consider the probability of
the player detecting a cheating move when they move two cells instead. For this
example, we will use the move (c3->cl).

3 H Players
meve Opponents
2 c3->cl move =
18 — H B
a b c

Legal Moves .
lllegal Moves .

Figure 28: Diagram of opening 2 moves, where the player moves (c3->cl)
As with the first example where the player only moved one cell, this puts the game

into a state where the opponent has 9 possible moves they can make, S of which
are illegal and 4 of which are legal. Using the saome assumptions as we did for the

32

first example, we can find the probability of detecting a cheating move when the
player first makes the move (c3->cl).

P(detect cheat (01->b2))
P(detect cheat (a1->b3))

((1/5*0 =0 (impossible to detect)
((
P(detect cheat (a1->c2))
((
((

1/5*0 =0 (impossible to detect)
1/5*2/4=1/10
1/5*1/4 =1/20
1/5*1/4 =1/20

P(detect cheat (a1->c3)) =
P(detect cheat (a1->al)) =

Therefore, the probability of detecting a random cheating move on the players
second turn, given that the player is making a random move and the first move
was (c3->c1) is 4/20 ().

From this, we can see that the player is more likely to detect a cheating move if
they make an opening move of only 1 cell compared to 2, with the probabilities of
7/20 and 4/20 respectively. Additionally, if the player makes a move that moves 2
cells in their first turn, it puts them in o position that means that the opponent
can capture their piece on their first turn, making it an undesirable move when
the goal of the game is to capture your opponents piece.

The probability of successfully detecting the opponent making an illegal move on
their first turn is relatively low and this is likely to decrease as the gome
progresses due to the increased uncertainty of where the opponent's piece is. The
number of states that the game could be in increases as each player maokes more
moves and the only time that the player can be certain of the gome’s state is
before the opponent makes their first move.

Detecting cheating is made more difficult by the fact that the players primary
objective is to win the game, so should be making moves that are advantageous
in reaching this goal as opposed to making moves that are purely to moximise
detecting a cheating move. This is made even more difficult in the case that the
player makes a move that is legal because once this is attempted, the move
occurs and they are unable to gain any additional knowledge about the goame
board. If the player attempts to make a move that is illegal, they are able to
attempt another move until they find one that is legal, meaning that they can use
these additional moves to attempt to learn more about the current state of the
game.

33

Implementation

kriegspiel implementation

The implementation of kriegspiel is written in python 3 and uses an
object-oriented architecture. Python is o common language so any issues during
the development of the project were relatively easy to debug thanks to the
documentation available online.

The main method of the game is located in the kriegspiel.py file and is intended to
be run from the command line. The program makes used of the argparse library
included in python as standard. The application has several arguments that can
be passed when it is run. The list of options can be displayed by running
kriegspiel.py, followed by the “h" flag.

NETws\implementation> python kriegspiel.py -h

[-1 LAYOUT_FILE] [-r {0,1,fair,laxx}]
—-g {debug,pvp,testing}] [-pl {human,random}]
-p2 {human, random}]

optional arguments:
-h, --help show this help message and exit
-1 LAYOUT_FILE, —-layout_file LAYO UT_FILE

The filepath of the layout you wish to load.
-r {0,1,fair,laxx}, --referee {0,1,fair,laxx}
The type of referee.
-g {debug,pvp,testing}, --gamemode {debug,pvp,testing}
The game mode to use.
-pl {human,random}, --playerl {human,random}
The type of player one.
-p2 {human,random}, --player?2 {human,random}
The type of player two.

Figure 29: Available arguments for kriegspiel. py

-r {fair, laxx, 0, 1}

Select the type of referee that should be used for the gome.

A fair referee allows both players to only make legal moves and acts as you would
expect in a normal game of kriegspiel. This is used by default if no referee has
been specified.

Using either 0 or 1 sets the referee to be a CheatingReferee that allows either the
white or black player, respectively, to make illegal moves. The player that is allowed
to cheat is defined by the number passed, which corresponds to the ID of the
player which is given an unfair advantage.

A laxx referee does not enforce any rules in the game and allows either player to
make any moves that they wish. Truthful output is still provided by this referee.

34

-g {debug, pvp, testing}

Choose the gome mode to launch the application in.

When running in debug mode, the actual state of the game board is echoed to
the command line whenever a move is made. This is useful for keeping track of
the game during testing or for learning the basics of how the game of kriegspiel
works.

To play kriegspiel normally, the pvp (player vs player) mode can be used. In this
mode, players take turns making their moves and can only see the moves that
they are making and their own pieces. This best simulates the experience of the
game that you would get while playing the game in the real world. The game runs
in pvp mode by default.

The testing gome mode was used during development and was used to run tests
on various situations that could occur in the gome. This is now unused but can
still be accessed. The testing() method within kriegspiel.py is run when this mode
is selected and can be modified for any future testing.

-p1, -p2 {human, random}

These are the types of player that player 1 or 2 will be used.

The human player is used when a real human player will be playing the game. This
prompts the user for their move whenever via the command prompt it is their
turn. The board (from thaot player's perspective) is echoed to the screen whenever
it is that players turn so that the user can decide what move to make. Referee
outputs are also output to the screen so that the user can understand what the
consequences of their moves are. Both players are human by default.

Random players make randomised moves when it is their turn. These players will
only make moves that are legal as defined by the referee.

-l LAYOUT_FILE

A file containing a board layout can be passed in and will be loaded for
gameplay. By default, the standard chess layout is used. Board layouts are
expected in the format of a text file with an 8x8 matrix representing a standard
8x8 chess board. Empty cells are shown with the number “0" and pieces are
defined by their algebraic characters, such as pawn being “p" or “P* and a rook
being “r" or “‘R". White pieces are represented by uppercase characters and black
pieces are represented by lowercase characters. The gome does not check if the
loaded game board is legal when loaded so any configuration can be used with

any number of pieces, even if it isn't a possible board in chess.

35

RMBQKENR
FPPPPPPP

[n]

aea

=]
3]

(]
]

L)

aees

daas

ficx]

&
GEag
&

o
[T % T N

5]

[xn)

PORPEPRD

rnbgkbnr

Figure 30: An example of the default chess layout (boards/default_layout.txt) in the
format accepted when loading game boards into kriegspiel py

kriegspiel

When creating a kriegspiel object, a minimum of 3 arguments are expected, being
two Player objects and a single Referee object. The referee is used to adjudicate
the game by regulating what moves are legal and provide relevant output
statements for players depending on the current state of the game. The Player
objects are used for deciding what moves are to be made when it is a players
turn.

Optionally, o board layout can be provided and used as the current state of the
game. If no board layout is provided then the default starting chess layout will be
loaded instead.

The option of using either chess symbols (&) or algebraic characters (K) is also
provided here. By default, the game will attempt to use chess symbols but may
cause issues if the environment does not support the appropriate unicode
symbols.

36

class Kriegspiel(}:
def _ init_ (self, player_1, player_2, referee, board_layout=None, use_symbols=True,):

player_1/2, Player objects

referee, Referee object

board_layout, iterable, a board layout to load.

use_symbols, boel, if pieces should use chess symbols (&) or letters (K)

self.board = Board()
self.players = {0: player_1i,

1: player_2}
self,use_symbols = use_symbols
self.last move = 1 #Who's move it was lIast

self.referee = referee

self.moves_made = O

if not board_layout:
#If no beard layout specified, load default starting chess board
self.load_game(DEFAULT _LAYOUT)

else:
self.load_game(board_layout)

Figure 31: The kriegspiel __init__ function

An integral function for playing the game the is do_move(), located in the
kriegspiel class. It is responsible for handling the player's moves, passing them to
the referee before then sending the referee’s output back to that player. By simply
calling do_move(), the player whose turn it is is prompted for a move in the form of
o tuple containing coordinates of the cell they are moving from and the
destination cell. The move is given to the referee, which provides one or more
RefereeOutput objects based on the outcome of that move. If the move is legal
then the move takes place and the state of the game board is updated. If the
move is illegal then the game board does not change and the player is prompted
again for their move. The RefereeOutput objects are sent to the relevant player(s)
whenever a move is attempted, regardless of the legality, and are used to inform
the player what the outcome of their attempted move was. When the game is in
normal operation, the do_move() function is repeatedly called until the game is
over and a winner is declared.

37

def do_move(self):
self.last move = Kriegspiel.opponent id(self.last move)
current_player_id = self.last_mave
#Player object:

current_player = self.get_player(self.last_move)

print("\nIt's {name}'s (ID: {id}) turn to make a move. [Move no {move_no}]".format(name=current_player.name, id=current_player_id, move no=self.moves_made))

is_wvalid_move = False

while not is_walid move:
_from, _to = current_player.do_move(self.get_board_for_player(current_player id))
is_wvalid _move = self.referee.is move_legal(from=_from, _to=_to

d=self.last_move, board= self.board)

move_output = self.referee.verify move(from=_from, _to=_to, board 1f .board, player id-self.last _move, player name=self.players[self.last_move].name)

#IT illegal, tell only the player that was making the move:
if isinstance(move_output[®], IllegalMove):
current_player.notify(move_output[B], self.moves_made)

#Lloop through the ref outputs and notify the corresponding players
for output in move_output:
self.get_player(player id=output.for_player).notify(output, self.moves_made)

#hen move is valid, perform the

Ve

self.move_piece(_from, _to, player id=self.last move)

#If the piece is a pawn and it is reaching the other side of the board, give a prometion:
if isinstance(self.board.get piece(to), Pawn} and _to[1] in [8, 7]:

promoted piece = self.board.get_piece(_to).promote()

self.board.add_piece(_to[1], _to[@], promoted_piece)

self.moves made += 1

#Check if the game is over:
for player_id in [8,1]:
if self.referee.is game over(player_id, self.board):
self.end_game(winner_id=Kriegspiel.opponent_id(player_id})

Figure 32: The kriegspiel.do_move() function

Rook

Each of the chess pieces follow the same pattern so we will simply use the Rook
class as an example. A dictionary is used to store the chess symbols and
appropriate characters for that piece, depending on who owns it. The keys of the
dictionaries are either 0 or 1, which represent the ID of the player that owns i,
which correspond to the piece being either white or black respectively. We then
need to define the legal translations that allow the rook to move in the correct
manner. Four lists of tuples are created for the rook, one for each direction of
movement, that contain the translations from 1 cell to a maximum of 7 cells in that
direction. These lists are then combined using the standard itertools module into
a single list and assigned to the _moves list of the Rook class. The _moves list is
the privately used list of moves which can be access externally by the moves

property.

38

clesz Rook{ChessPiecs):

def __ init_ (self, *args, **kwargs):
self.name = "Rook"
celf.symbols = {@: "E", 1: "X"}
self.letters = {8: "R", 1: "r"}
up_moves = [{8,1) for i in range(d,8)]
down_moves = [(B,1i) for i in range(-8,8)]
right moves = [(1,8) for i in range(d,8)]
left_moves = [(1,8) for i in range(-8, @)]
self, moves = list(itertools.chain{down_moves, up_moves, right moves, left _mowves))
super{).__init (*args, **kwargs)

Figure 33: The Rook class

if use symbol:

self.symbol = self.symbols[colour]
self.symbol = self.letters[colour]

Figure 34: Assigning pieces the correct symbol in the ChessPiece.__init_() function,
based on its colour and whether or not chess symbols are selected

Pawn

The Pawn class is the most interesting of the chess pieces due to its varying types
of movement available and that it can be changed into another piece. As with all
of the chess pieces, the Pown class inherits from the ChessPiece class. However, in
order to allow the piece to move two cells on its first move, the Pawn class also
overrides the get_moves() getter function. This works by simply returning the
normal available movelist with an additional translation move that moves two
cells vertically in the appropriate direction for the colour of that piece if the
current move_counter is set to 0.

The Paown class also contains an additional method promote(), which is used when
the piece reaches the opposite side of the board. This is then called by the
kriegspiel object which returns a Queen object with the same owner as the pawn,
oas well as continuing to use either a symbol or letter to represent it. The kriegspiel
object can then replace the piece in that cell with the returned piece returned by
this function, effectively converting the pawn into a queen.

39

class Pawn{ChessPiece):
def __ipit_ (self, *args, **kwargs):
self.name = "Pawn”

[8: "&", 1: chr{9823)}

self.symbols
self.letfers = {8: "P", 1
. D [{8,-1)1, 1: [(8,1)]1}

self .attack moves = {@: [(1,-1}), (-1, -1)1, 1: [(1, 13, (-1, 131 }

"pey
self._moves =

i
k]

super{).__init_ (*args, **kwargs)

#0verwrite moves getter for pawn. Moves change depending on the situation
if self.move counter == O

#Can move 2 if it the paun's T1 ove

return self._moves + {8: [{8,-2)], 1: [(@,2)]}[self.owner_id]
el=zg

return self. moves

def promote{self):

return Queen{self.use_symbol, self.owner_id)
moves = property{get_moves)
Figure 35: The Pawn class

Other tools

An additional tool was created during this project which is a simple graphical tool
to make creating/testing gome boards quicker and easier. As with the rest of the
implementation, this tool is written in python. It allows the user to select chess
pieces and place them on the board by simply clicking on the cells that they wish
to contain that piece. These game board can then be exported as a text file that
can be read-in by the kriegspiel application. For convenience, the top and bottom
two rows have either white or black borders, showing which colour of piece usually
belongs there. This is important because the direction of movement of pawns is
colour-dependant so they are required to be on the correct side of the board.
The GUI was made using tkinter but the program relies on an external library
“easygui” for saving game boards. Functionally, the library is not necessary but
was included to make use of the function filesavebox() which simply prompts the
user to select a destination and name to save a file to, shown in figure 38. This
makes the tool more convenient to use than it would be otherwise and given that
this tool is purely for convenience, it was included instead of a basic filename
prompt.

40

I t? Board Builder —

c i c BIE|& A % @R S

LY

e | | S

B @ ke Dy [
O B i S
Gz & = 1>

sove| BlB|2[2|2[2]2]|82

Clear E@ﬁ%@ﬁ@g

Figure 36: The board builder application for creating game boards

saven
« Work » Year 3 » diss mpl tati board:
Organize v MNew folder EZ -
e} !
¥ Quick access

" | bishops.hyt
< Downloads 3
| bwtest.yt
& Documents | checkmate.lyt
& Music checktest lyt
=] Pictures B default_layouttid |
o Hard_Drive (E | nopawns.lyt
~
Program_File _| only_pawns.lyt § g E 2 ﬂ %‘ @ i 2 E
i | onlypawns. iyt -
48 python g ‘ g
15 | pathway.lyt i g & i i g i i
toolKit_1.20 =
|| randtestTiyt g |
Scripts y
| thyt
30_Models B testt £/02/201821:553 TXTFile L -2
- ¥ = v
fie e - @
Save as type: | All files (*.) v | - o
~ Hide Folders Cancel | i

Figure 37: Saving a custom board layout

41

Results and Evaluation

Evaluation of the implementation

In order to evaluate the implementation, we can compare the final application
against the requirements that were set at the beginning of the project and decide
which have been met and to what extent.

“The implementation needs to be open-source because the code of this project is
required to be released under MIT license.”

This requirement has been satisfied as the project code and documentation is
being made open-source and will be available on github [13]. once the project is
released. The source code includes a LISCENSE.txt file which explains the MIT
license and how it applies to the code of this project.

“The implementation should preferably be written in either python or java. "

The entire project and the additional tools that were created were all written in
python 3. This requirement has been satisfied and additional reasoning has been
given as to why this language was chosen for the project.

“The implementation should allow me to easily poll the game board to get piece
locations and access the outputs of the referee.”

Within the implementation, the kriegspiel object includes several different
methods that allow the board to be queried. The contents of individual cells can
be accessed easily via the get_piece() function but other queries can also be
made that return the owner of the piece in a given cell or whether or not there is
o piece in a cell. These additional functions were included for cases where the
specific details of a piece should not be known and we just need to know if a cell
is empty. The kriegspiel class contains the method get_board_for_player() which
takes a player_id and returns the gome board as seen from their perspective in
the form of a Board object. This is very useful as it can safely be passed to a
Player object when it is their turn which they can use to decide what move to
make, without providing them with the entire game board in which they could see
the opponents pieces. This also means that the players can be trusted when
making their move because the Player object cannot access the full gaome board.

42

def get_piece(self, loc):
#Return the contents of a cell, given it's location
return self.board[loc[1]][loc[®]]

def get owner_of_piece(self, loc):
#Return the owner id of the piece in a given cell location
return self.board[loc[1]][1loc[@]] . .owner_id

def cell is free(self, loc):
#Is a cell free (not occupied)?

return self.board[loc[1]][1oc[B]] ==

def move_piece(self, _from, to, replace_from_with=8):

Move a piece from one cell to another.

"From" cell can be replaced with anything. Replaced by 0 by default.
"To" cell gets replaced by the "from" contents.

No checks are made as to whether the move is legal.

self.board[to[1]][to[6]] = self.board[_from[1]][_from[&]]
self.board[_from[1]][_from[@]] = replace_from_with

Figure 38: Functions within the Board class for accessing/changing cells on the
game board

def get_board_for_player(self, player_id):

Return the board from a player's perspective,

Only includes their pieces.

board_copy = Board()

for r_no, row in enumerate(self.board.board):

for c_no, cell in enumerate(row):
if isinstance(cell, ChessPiece):
if cell.owner_id == player_id:
board_copy.add_piece(r_no, c_no, cell)

return board_copy

Figure 39: The get_board_for_player() function of the kriegspiel class that retrieves
the board from a player’s perspective

Any outputs given by the referee are passed to the players that they are relevant
for. The Player objects are then able to save a history of these and use them for
any calculations or analysis that is required. The referee outputs are provided as

43

different objects, each with a different class depending on the type of output. The
RefereeOutput objects include the turn number, the cells of the game board that
are relevant, whether or not the move was successful, the text associated with the
output as well as the id of the player it was intended for. This makes analysing the
outputs easier because the player can easily query this data from the output
objects and use it to perform analysis of the game. By using separate classes for
each of the possible referee outputs, it is easier to process because any checks
can simply check the class of the output object to determine what type of output
it is. This means that changes, such as changing the text, can be made to the
RefereeOutput classes without inhibiting any functionality that may already be in
place. This requirement has been satisfied fully which was due to the
implementation being written from scratch which meant that the design of the
system could focus on satisfying this requirement.

“The game should have a simple text based interface.”

The gome uses a text-based user interface to display the state of the game to the
player and to prompt them for moves. The history of outputs from the referee are
displayed to the player before they make their move in order to aid them in
deciding what move to make. The user inputs their move using algebraic chess
notation and to make gameplay more convenient, the coordinates are provided
when the board is printed. This requirement has been satisfied and the game has
the potential to be extended to use a graphical interface in the future if required.

It's Black's (ID: 1) turn to make a move. [Move no 3]
History of referee outputs:
53 From To OQutput
(2, 6) (2, 5) @1 - Move was legal.

=] 00

6
5

P

= RS L

Figure 40: The game of kriegspiel being played

‘Documentation should be provided for any code involved”
44

Throughout the code for this project, there are comments describing what is
happening and why. This will be useful in the future if the project requires
maintenance or if any improvements are to be made. By providing comments in
the code, it makes it easier to understand what is happening at specific points,
without needing to refer to any external documentation. Documentation has also
been provided in the form of this report, which includes reasoning for some of the
design decisions made throughout the project. Although the documentation
provided should provide some help, this could have improved upon it further by
creating a dedicated design document. If there was more time available for this
project then it would have been advantageous to write more documentation. In
the planning stage of this project, no time was allocated for writing dedicated
documentation which was an oversight. A UML class diagram was created to
illustrate the different classes in use as well as the functions that they have
available and their interactions with each other. This is an effective tool for
visualising the design of the system and has been useful when evaluating the
different classes’ methods and how they can be improved. This requirement has
been satisfied although improvements could still be made in the form of a
dedicated design document.

“The implementation should allow users to play the game of kriegspiel”

This implementation of kriegspiel is playable by both human and non-human
players. Most features of chess are available within the game, however, some more
complex aspects are not present. For example, the move of castling [14], which
allows a player to move both their king and rook in a single move, is not
supported in this implementation. Castling is a more advanced chess technique
ond would take additional time to implement so was not including it in this
implementation, however they could be included in the future if required.

g @ B

45

Figure 41: A castling move

As with castling, the en passant move was not included in the implementation due
to it's additional complexity and the amount of time required to implement such a
feature which would be rarely used. En passant allows a player to move a pawn in
way that is not usually legal and involves capturing one of their opponents
pieces. This move relies on the opponent’s piece being in a specific location which
further reduces how likely it would be for a player to wish to use this move in the
game of kriegspiel. If additional time was available then this may have been a
desirable feature to add.

Figure 42: En passant move

In the usual circumstances of chess, when a pawn reaches the opposite side of
the board, it is given the chance to be promoted into a piece of the player's
choice, being either a rook, bishop, queen or knight. The implementation of
kriegspiel supports pawn promotion, however, the piece is always converted into a
queen and the player is not given a choice. This decision was made because most
promotions in chess are conversions to a queen due to it being the most powerful
piece. By not giving the player a choice, this has meant that the promotion
process within the implementation can be simplified by converting the pawn into
o queen, without the need to prompt the player to maoke a decision. Adding a
simple prompt for human players would be a relatively simple task, however, this
may cause issues with other types of non-human players so was not included.

46

Blale E Elal@ E
Ela| [w £le| [w

3 3 &
® & & % & &
: & & & g\
< & |al= o @ (2B

Figure 43: A promotion of a pawn into a queen

‘It would be desirable to be able to view games in the PGN format”

The implementation does not support viewing games in Portable Game Notation
(PGN) format. This was a feature that could have been advantageous to have
because it would mean that games could be analysed after they had been played.
Having games in PGN format may also have allowed them to be utilised by other
chess applications/utilities. This was another feature that would have been
desirable to have but could not be implemented due to time constraints.

Evaluating cheat detection

Cheat detection was investigated over the course of the project but unfortunately
no viable methods were found. There were some findings however and MDP does
not appear to be a suitable method for this task due to the complexity of the
problem. The MDP was not applied to the problem directly or within any
implementation, which may have been advantageous to attempt if there was more
time available for the project. Different forms of Al could have be investigated and
compared against MDP to get a better idea of how feasible this problem is to
solve. Other methods may be more suited to this problem and could be
investigated in the future.

47

Future Work

In the future, the implementation of kriegspiel could be extended to include many
additional features that make it more useful or user-friendly. A graphical
interface (GUI) could be added to improve usability of the system. This interface
could include a grophical representation of the game board which would allow
players to simply select where they want to move pieces using the mouse instead
of requiring to input coordinates via the keyboard. The GUI could also include a
list of the referees outputs for the user to analyse. A feature could be added to
this list of outputs that would allow the player to view previous states of the
board, which could make it easier to understand how the gome has progressed.

Giving the ability for players to play gomes across a network connection would
also be a beneficial feature to add. This would allow users to play without needing
to be on the same machine or even in the same location. Being able to play
across a network would closer represent how the game works in the real-world
because the players would always be able to see the state of the game from their
point of view without needing to wait for the opponent to move. The way the
current player-vs-player mode works involves the players needing to enter their
move into the game and then move away from the machine so that their
opponent can make their move. It would be far more convenient for them to be
able to play from different machines across a network.

Currently, the game handles the referee outputs automatically by determining
which moves are legal for each player. The referee class could be extended to
allow a human referee to oversee the game and provide outputs to the players. By
allowing a human to give outputs, the implementation would represent the
real-world version of the game even better. This could be combined with making
the game work over a network, which could allow a human referee could oversee
the game from a different machine and make the game even more convenient to

play.

In the future, a cheat detection system could be added to the implementation
which could allow real-time cheat analysis as the game goes on. This would allow
o human referee and two human players to be able to play together whilst also
being able to ensure that the rules of the game where being followed. For this to
be a possibility the cheat-detection itself would require more research as there
concept has only been explored on a very simplified version of the game, without
ony successful implementation currently existing. The concepts that were looked

48

into during this project could be researched further and expaonded into more
complex versions of the game that include larger game boards and more pieces.

Different methods of cheating could be looked-into and attempted to be
detected. Currently, only some methods have been considered, such as the
cheating that allows the opponent to move pieces in a manner which is against
the rules. Other cheats that were outlined previously (on page 21) could be added
to the cheat detection system which would increase its usefulness.

If the system is applied to kriegspiel successfully, it could potentially be applied
to other games which also have partial information. As well as goames, the system
may be able to be applied to real world situations in which a third party needs to
be involved with a process.

49

Conclusions

A functioning implementation of kriegspiel was made and has been made
open-source. The implementation satisfies all of the requirements that were
decided upon at the beginning of the project so it can be considered a success.
Some minor features such as being able to support the PGN format for games are
not included in the implementation however, so there are improvements that
could be made in the future. The implementation allows most features of chess to
be used besides a couple of advanced chess moves, such as en passant and
castling. The implementation works as intended and may be useful for future
projects by either myself or for others. The documentation provided should be
appropriate for any external researchers to adapt the implementation for their
purposes if required.

Cheat detection in kriegspiel is a considerably difficult task and a solution to the
problem was not found during this project. The Markov decision process was
investigated as being a potential solution to the problem but it seems unsuitable
due to the number of states in the game and how the problem scales. The
branching factor of the game seems too large for MDP to be of use. MDP is more
suited to playing games of partial information, rather than detecting if cheating
is in play. The diagrams used for MDP were useful for mapping out the problem
ond they helped to illustrate how the states of the gome change and how difficult
the problem is. Hopefully this insight can help future research within the field and
encourage others to investigate this issue.

S0

Reflections on learning

At the beginning of the project, | made estimations as to what | thought would be
possible and decided what my goals would be. After working on the project | have
found that my initial expectations were unrealistic and that | was not able to
reach the point of the project that | had first hoped within the time constraints.
This has taught me that it's best to spend more time researching a problem
before attempting to set concrete goals and allocating time to individual tasks.
My milestones were unrealistic and | found that | was unable to reach them within
the allocated time frome. | had originally planned for the implementation of the
game to be both designed and functioning within 3 weeks of submitting the initial
plan. This was not enough time and | found that it took over twice that amount of
time and that | was still making changes to the implementation in the final month
of the project. This left me with considerably less time than | had originally
planned to focus on the cheat detection aspect of the project. This has been a
valuable lesson in the software development process and given me insight into
how tasks within a project can toke considerably more time than planned.

The documentation for the implementation is suitable for this project, however it
would have been advantageous to have been able to provide a dedicated design
document and documentation along-side it. As stated previously, this was partly
due to the time constraints of the project and oversights during the planning
period. In the future, | will ensure to allocate ample time to create suitable
documentation for any projects that | contribute to. A possible way that this could
have been done better would have been to start creating a dedicated design
document at the start of the project and to add to and maintain it as the
development process progressed. | found that the documentation that | did
create was very useful, even as the designer of the system. | used the UML
diagram to fix some inconsistencies with some methods within the Referee class in
which some methods expected a Board object and others expected an array. This
issue was highlighted to me whilst creating the UML diagram and this allowed me
to correct this issue by making the referee methods consistently expect a Board
object.

| had originally hoped to implement a system that would be able to reliably detect
cheating within kriegspiel. However, once | began carrying out further research
into the subject, | soon realised that this was a much more difficult task than | had
first anticipated. This led to me needing to drastically simplify the problem that |
was trying to solve by reducing the size of the board and the number of pieces
involved. Even with this simplified board, the problem was still very difficult which
further enforced the idea that first attempting to solve the problem as a whole
was a poor decision. In the future, | will reduce larger problems such as this into

ol

simpler tasks and attempt to solve those first. This should help me to discover if
my ideas about the given problem are going to work and help me to think about
the problem more logically, without becoming distracted or confused by the
complexity of the larger issue. A combination of the problem being more complex
than expected and the reduced time | had to focus on the cheat detection meant
that | made little progress towards detecting cheating within the game. This was a
valuable learning experience which will aid me in future projects by encouraging
me to allocate more time to tasks and to make my goals more realistic based on
the time available.

52

References

(11 The MIT License | Open Source Initiative, [Online] Available at:
https://opensource.org/licenses/MIT
[Accessed: 09/04/2018]

[2] PGN-SPEC - Play Chess with Friends, [Online] Available at:
https://www.chessclub.com/help/PGN-spec
[Accessed: 10/05/2018]

[3] Standard algebraic notation - chess, [Online] Available at:
http://cfajohnson.com/chess/SAN/
[Accessed: 10/05/2018]

[4] Irwin, M 2013, The kriegspiel chess variant, playable on the web, [Online]
Available at: https://github.com/binarymax/kriegspiel
[Accessed: 10/05/2018]

[5] Bodlaender, H 1994, kriegspiel, [Online] Available aot:
htto://www.chessvariants.com/incinf.dir/kriegspiel.html
[Accessed: 10/05/2018]

[6] Scikit-learn: machine learning in Python — scikit-learn 0.191 documentation,
[Online] Available at: http://scikit-learn.org/stable/
[Accessed: 10/05/2018]

[7] Cordwell, S 2013, Markov Decision Process (MDP) Toolbox for Python, [Online]
Available at: https://qgithub.com/sawcordwell/pymdptoolbox
[Accessed: 10/05/2018]

[8] Santos, L 2018, Markov Decision process - Artificial Inteligence, [Online]
Availoble at:
https://leonardoaraujosantos.qgitbooks.io/artificial-inteligence/content/markov_d
ecision_process.html

[Accessed: 10/05/2018]

[?] Miller, LD & Eck, A 2011, Partially Observable Markov Decision Process, [Online]
Available at:
http://cse.unl.edu/~lksoh/Classes/CSCE?920AMAS_Springll/Seminar02pdf
[Accessed: 10/05/2018]

o3

[10] Otterlo, M 2009, Markov Decision Processes: Concepts and Algorithms [Online]
Available at: https://www.cs.vu.nl/~annette/SIKS2009/material/SIKS-RLIntro.pdf
[Accessed: 10/05/2018]

[MM] Caopablanca, J 2006, Chess Fundamentals: Completely Revised and Updated
for the 2Ist Century, Random House Puzzles & Games

[12] Shannon, C 1950, Programming a Computer for Playing Chess, Philosophical
Magazine, Ser.7, Vol. 41

[13] Berg, J 2018, Open source implementation of kriegspiel, [Online] Available at:
https://qgithub.com/Box-Of-Hats/kriegspiel
[Accessed: 10/05/2018]

[14] Bodloender, H 2005, Rules of Chess: Castling FAQ [Online] Available at:
http://www.chessvariants.com/d.chess/castlefag.html
[Accessed: 10/05/2018]

o4

