
Simulating the Effects of Releasing
Malware into the Internet of Things

Jamie Knowles
School of Computer Science and Informatics

Cardiff University

A thesis submitted as part of the requirement for the degree of

Bachelor of Science in Computer Science

May 11, 2018

Acknowledgements

Firstly, I would like to thank my family; their unconditional love and sup-
port continually motivates me to be this best I can be everyday. Secondly,
I would like to express my appreciation to my supervisor Eirini Anthi for
her support throughout the course of this project; a project that would
not have been successful without her input and guidance. Furthermore,
I would also like to thank all of the friends I have made in the last four
years who have made my experience at University an absolute blast!

Abstract

The emergence of the Internet of Things has caused a variety of issues in
the world of cyber security. Many device manufacturers are distributing
insecure devices to customers and many customers are unaware of how
to keep their devices secure. This has allowed the Internet of Things
to become a goldmine for hackers and permitted them to complete their
objectives with relative ease whether that be to take down critical infras-
tructure or steal sensitive information.

To further assist in raising awareness of the insecurities of the Internet of
Things this project involves the development of software that simulates
malware propagation on real device data.

Contents

1 Introduction 1

2 Background 3
2.1 The Internet of Things (IoT) . 3

2.1.1 An Introduction to IoT . 3
2.1.2 An Anatomy of an IoT Device 3
2.1.3 IoT; Risk or Reward? . 4

2.2 The Rise of the Cyber Threat . 4
2.2.1 An Introduction to Cyber Attacks 4
2.2.2 Who is the Adversary? . 5
2.2.3 A Brief History of Cyber Attacks 5

2.3 Malware, the Ultimate Cyber Weapon 6
2.3.1 The Cyber Kill Chain . 6
2.3.2 An Anatomy of IoT Malware 7
2.3.3 Countermeasures . 8
2.3.4 Famous IoT Malware . 9

2.3.4.1 Mirai . 9
2.3.4.2 Brickerbot . 9
2.3.4.3 BASHLITE . 9

3 Specification and Design 10
3.1 Overview . 10
3.2 Requirements . 10
3.3 Design . 14

3.3.1 System Architecture . 14
3.3.2 User Interface . 15
3.3.3 Simulator . 21

3.4 Technologies . 25

i

4 Implementation 29
4.1 The Database . 29
4.2 Collecting Data . 29
4.3 Developing the Simulator . 31
4.4 Building the User Interface . 35

5 Quality Assurance 39
5.1 Testing the User Interface . 39

6 Results and Evaluation 43
6.1 Fulfilment of Requirements . 43
6.2 Project Limitations . 45
6.3 Reflection on Management and Methodology 45
6.4 Assessing the Implementation of Designs 46
6.5 Known Bugs . 47
6.6 Final Product . 47
6.7 Usage of Technologies . 49
6.8 Analysing the Vulnerability of the Internet of Things 49
6.9 Analysing the Accuracy of Simulation Results 52

7 Future Work 54
7.1 Add Additonal Malware . 54
7.2 Exception Handling . 54
7.3 Improving Markov Chain . 54
7.4 Implementing Play/Pause Functionality 55
7.5 Implementing Simulation Progress . 55
7.6 Further Rigorous Testing . 55
7.7 Providing Possible Solutions to Vulnerabilities 55
7.8 Offering Personal User Profiles . 55

8 Conclusions 57

9 Reflections on Learning 59

Appendix A 61

Appendix B 62

Appendix C 64

ii

Appendix D 66

Appendix E 67

Appendix F 69

Appendix G 71

References 75

iii

List of Figures

2.1 The cyber kill chain . 6

3.1 A diagram of the systems architecture 14
3.2 The dark colour scheme . 16
3.3 The light colour scheme . 16
3.4 Roboto font . 17
3.5 Roboto Mono font . 17
3.6 DarkMatter map without labels . 17
3.7 DarkMatter map with labels . 17
3.8 Positron map without labels . 17
3.9 Positron map with labels . 17
3.10 System state before any malware has been released 18
3.11 System state before any malware has been released with side-menu closed 19
3.12 During a simulation taking place . 19
3.13 After a simulation has taken place . 20
3.14 Device information displayed from clicking on a device marker 20
3.15 Markov chain for the malware kill chain 23

6.1 A screenshot of the final product in action 48

iv

List of Tables

2.2 A brief history of cyber attacks . 6

3.1 Markov chain transition matrix . 24
3.2 Estimated timings for malware kill chain 24

6.2 Fulfilment of essential requirements 44
6.4 Fulfilment of desirable requirements 45
6.5 Known bugs . 47
6.7 Simulation results for Mirai . 50
6.9 Simulation results for Brickerbot . 51
6.11 Simulation results for BASHLITE . 51

v

Chapter 1

Introduction

By the end of this year, there will be more than eight billion Internet of Things
(IoT) devices connected worldwide[10]. Many of these devices are left vulnerable and
are therefore constantly exploited by hackers across the globe. In October 2016, a
company that controls a large majority of the Internet’s domain name system (DNS)
infrastructure named Dyn was hit by a distributed denial of service (DDoS) attack
that led to numerous popular sites suffering downtime including Twitter, Netflix and
Reddit. The attack was orchestrated by a strain of malware known as Mirai, the
strain infects vulnerable IoT devices to form a botnet. In this instance, the botnet
was used to coordinate a DDoS attack on Dyn. The attack is known as one of the
largest disruptions the Internet has suffered [26]. It is clear that, with the amount
of IoT devices rapidly rising, more needs to be done to raise awareness of how vul-
nerable the Internet of Things is and what the consequences of these vulnerabilities
could be. Angel Martin del Rey, a Mathematics professor from the University of Sala-
manca believes that the fight against malware is missing one key ingredient, software
simulating malware propagation[19].

Therefore, this project aims to create an application that is capable of simulating
the effects of releasing malware into the Internet of Things. The system will give a
visual representation to the user of devices becoming infected and a representation
of the steps taken when attempting to infect a device. The system will demonstrate
using these simulations and visulations how vulnerable the Internet of Things is and
what the consequences of these vulnerabilities could be.

This project is intended to be built as a useful tool for IoT stakeholders who are
unaware of the insecurities of the Internet of Things. Such examples of interested or
concerned entities could be businesses selling devices or customers buying devices.

The scope of this project is to deliver a system that allows the simulation of
multiple strains of malware on a given set of devices and visualises the results of a

1

simulation in a user-friendly fashion. To achieve this real device data will be required
that will be used to simulate IoT devices, this will be acquired from Shodan (shodan.
io). A simulation of an attempt to infect a set of devices with a given strain of
malware can then be performed by using this data and information gathered about the
malware being simulated. Although many strains of malware may propagate to other
devices on a network once infected, this will not occur during the simulations that will
be performed. The effects of the simulation will be shown through a graphical user
interface. The project will require in-depth research to be conducted on the Internet
of Things, existing IoT malware, probability theory and the technologies at use in
the project where proficiency may be lacking.

The system will be designed with modularity in mind so that each service is
lightweight and has its own unique, well-defined goal. Although some tasks will
require the project to be executed in a sequential manner, the phases within the
stage of development will require a more flexible approach due to the modularity of
the system. Therefore, the Scrum methodology will be used which involves working
towards sub-goals within specific time frames, called sprints. Time will be taken each
day to reflect on previous work, decide on future work and how any problems that
have occurred may be solved. It is important to note that Scrum is usually ideal for
small teams but utilising the key principles of this methodology will allow continuous
improvement through constant reflection of progression. During the duration of this
project Scrum will be executed in one week sprints.

It is assumed that users of the system will have a sufficient understanding of
what an IoT device is and what it means to infect a device with malware. The users
should also be able to run JavaScript within their browser and have an active Internet
connection unless the system is run locally.

2

shodan.io
shodan.io

Chapter 2

Background

2.1 The Internet of Things (IoT)

2.1.1 An Introduction to IoT

The Internet of Things is the network of all physical devices embedded with elec-
tronics, software, sensors, actuators and connectivity which enables them to connect
and exchange data. Each device is able to operate within the existing Internet in-
frastructure. As previously mentioned, by the end of this year there will be more
than eight billion IoT devices connected worldwide. By 2020, experts estimate that
IoT will consist of more than 20 billion devices and spending on hardware from both
consumers and businesses will reach almost $3 trillion[10].

2.1.2 An Anatomy of an IoT Device

An IoT device is a special-purpose device, that connects wirelessly to a network and
transmits and receives data in order to monitor or control a "thing"[17].

Sensors and Actuators

In order for an IoT device to work it is reliant on sensors, actuators or both. The
sensors job is to acquire data and the actuators job is to control the data or act on the
data. For example, a sensor may monitor and provide data about the temperature
and then an actuator may adapt the controls in a smart thermostat accordingly[17].

Firmware

IoT devices also require firmware which can either be embedded or operating system-
based. Embedded firmware is specialised software that runs on the device and inter-
acts with the devices hardware. With the necessity for more sensors, greater data

3

processing, storage capabilities and more - the demand for more complicated software
to manage and exploit the new capabilities has also grown. This is where operating
system-based firmware is used, this type of firmware provides a layer of abstraction
between the hardware and other software that runs on the device. This enables a fa-
miliar division of labour for businesses; embedded software engineers can now spend
their time writing device drivers and application programmers can spend their time
writing the software that makes the device "smart". A popular operating system for
many IoT device manufacturers is BusyBox (busybox.net), a stripped down version
of the Unix operating system that contains many of the most common utilities, has a
very small footprint, and provides many capabilities of Unix in a single executable[17].

2.1.3 IoT; Risk or Reward?

There is no question that the Internet of Things is transforming the world in a mul-
titude of ways. However, security has not always been emphasised by manufacturers
during the stage of product design. This, and the fact that most consumers are not
aware of what they can personally do to keep their devices secure means that IoT can
also be highly disruptive. The Dyn attack discussed in chapter 1 is a good example
of IoT being exploited to cause mayhem. Do examples like this make IoT too big of
a risk? Now that IoT devices are being used in delicate fields such as health care[15]
it is only a matter of time before an IoT-based cyber attack is executed that could
result in causing physical harm to an individual. Therefore, if IoT security is not
improved the risks will eventually outweigh the rewards.

2.2 The Rise of the Cyber Threat

2.2.1 An Introduction to Cyber Attacks

A cyber attack is an attempt by hackers to damage or destroy a computer network
or system. Over the years, cyber attacks have been extremely costly to businesses.
When Sony’s PlayStation Network was attacked in 2011 it suffered an outage of
23 days, Sony was pursued with all sorts of legal action and it was believed that
over 100 million people were thought to have been affected by the attack. Sony
executives suggested that the breach would cost the company $171 million[11]. In
recent years, more state-sponsored cyber attacks have occurred. These attacks have
heightened tensions between various countries. After an attack was performed on the
Democratic National Committee (DNC) in 2015/2016, the CIA attributed Russia to

4

busybox.net

the attack and after further investigation concluded that they had intervened in the
2016 U.S. election[1] causing tensions between the United States and Russia to rise
tremendously.

2.2.2 Who is the Adversary?

Cyber attacks can be performed by anyone with a reasonable computing knowledge
and access to the Internet these days. However, the more damaging and sophisticated
attacks are usually performed by either Black Hat cyber security experts or state-
sponsored hackers. As previously mentioned, the number of state-sponsored attacks
have risen with various states such as Russia and North Korea making big noise.
In 2017, the Foreign Office Minister for Cyber Security, Lord Ahmad attributed the
WannaCry ransomware incident that impacted 300,000 computers in 150 countries
including 48 NHS trusts to North Korean actors, the Lazarus group[3].

2.2.3 A Brief History of Cyber Attacks

In recent years, cyber attacks have caused disruption across the globe. This section
details a brief history of some of the most famous cyber attacks that caught the
media’s attention.

Year Summary of Cyber Attack

2010 The Stuxnet worm infiltrates a nuclear factory. It is reported that Iran decommissioned
around 20 per cent of its centrifuges in the Natanz plant during the attack[5].

2011 Sony’s PlayStation Network was attacked in 2011. It suffered an outage of 23 days, Sony
was pursued with all sorts of legal action and it was believed that over 100 million people
were thought to have been affected by the attack. Sony executives suggested that the breach
would cost the company $171 million[11].

2014 Sony Pictures is hit by an attack attributed to North Korea due to its upcoming release of
satirical comedy The Interview, which involves a plot to assassinate North Korean leader
Kim Jong-un. The attack exposed embarrassing emails and personal details about some of
the world’s biggest movie stars[4].

2016 A Democratic National Committee (DNC) computer is compromised by Russian hackers
and Wikileaks publishes Hillary Clinton’s emails obtained from the hack[8].

2016 Domain name system (DNS) infrastructure company, Dyn, is hit by a distributed denial of
service (DDoS) attack causing numerous popular sites including Twitter, Netflix and Reddit
to suffer downtime[26].

2017 WannaCry ransomware impacts 300,000 computers in 150 countries including 48 NHS
trusts[3].

2017 Petya ransomware spreads through large firms including the advertiser WPP, food company
Mondelez, legal firm DLA Piper and Danish shipping and transport firm Maersk, leading to
PCs and data being locked up and held for ransom[22].

5

2017 Equifax is hacked and 146.6 million names, 146.6 million dates of birth, 145.5 million social
security numbers, 99 million addresses and 209,000 payment cards are exposed[7].

Table 2.2: A brief history of cyber attacks

2.3 Malware, the Ultimate Cyber Weapon

Malware, short for malicious software, is a term used to refer to any software designed
to cause damage to a single computer, server, or computer network. A strain of
malware can come in various forms whether it be spyware, ransomware or just a
regular virus[14].

2.3.1 The Cyber Kill Chain

A cyber kill chain maps the stages of a potential security breach. It can be used to
help us understand the process malware or an actor takes when performing a cyber
attack. The following cyber kill chain shown in figure 2.1 was derived by Lockheed
Martin (lockheedmartin.com) from a military model[13].

Figure 2.1: The cyber kill chain

1. Reconnaissance.
Reconnaisance is the information gathering stage. This is where an attacker

6

lockheedmartin.com

seeks information that might reveal vulnerabilities of a system such as open
ports or an outdated operating system.

2. Intrusion.
Intrusion involves using the information gathered from the reconnaissance stage
to gain access to a system. This could be by trying to brute-force a weak open
port such as Telnet.

3. Exploitation.
Once access is gained to the system it can then be exploited by performing tasks
such as installing tools.

4. Privilege Escalation.
Escalating privileges is the next stage. This is done because having access to a
system is great, but having full access to a system is better.

5. Lateral Movement.
In order to gain more access or find more information the attacker may need to
move around a network from system to system.

6. Obfuscation (anti-forensics).
Obfuscation is the task of hiding an attackers tracks to mislead the owner or
forensic analysts, this can be done by performing such tasks like editing log files
or deleting files.

7. Denial of Service.
A denial of service (DoS) attack may be performed on a network or infrastruc-
ture to disrupt access, crash systems and flood services.

8. Exfiltration.
This stage involves copying, transferring or moving data to a controlled location.
This data can then be used by the attacker. For example, the attacker may
choose to leak the data to the public.

2.3.2 An Anatomy of IoT Malware

The Attack Vector

To perform an attack, the attacker needs to hit an attack surface, an attack surface
is the sum of all of the target devices vulnerabilities. Once an attacker has become
familiar with an attack surface they can identify an attack vector, this is a point

7

of entry that can be exploited to gain access to a device[17]. An IoT device attack
surface can contain an abundance of attack vectors but here are some of the most
common:

• Weak passwords

• Lack of encryption

• Backdoors

• Internet exposure

Additionally, the Open Web Application Security Project (OWASP) (owasp.org)
runs the IoT Attack Surface Area Project, a project that maintains a list of potential
vulnerabilities in the IoT attack surface.

The Attack

An attack comes in two phases; the scan and takeover phase and the attack launch
phase. These phases are usually executed by a Command and Control (C2) server[17].

1. Scan and Takeover.
The C2 server finds vulnerable hosts and attempts to gain access. If access
is gained to a host then the the host, attack vector and any other essential
information is reported to the C2 server. The C2 server then pushes the malware
to the device and that is necessary to perform the attack. The host is now under
control by the C2 server and awaits further instructions.

2. Attack Launch.
The C2 server can now launch an attack, this could be to form a botnet and
perform a DDoS (distributed denial of service) attack or alternatively sensitive
data could be retrieved from a controlled device.

2.3.3 Countermeasures

In truth, malware is always adapting and finding new ways to infect targets and
so there are no countermeasures that can provide complete security. However, the
following countermeasures provided by IBM[17] can give additional security and make
IoT devices less vulnerable.

• Always change default passwords

8

owasp.org

• Remove devices with Telnet backdoors

• Never expose a device directly to the internet

• Run port scans on all of your machines and close ports accordingly

2.3.4 Famous IoT Malware

2.3.4.1 Mirai

Mirai was the strain of malware used to perform the Dyn attack discussed in chapter
1. It works by scanning the internet for hosts with an open Telnet port (TCP port
23). Once a host is identified it uses a list of default usernames and passwords to
gain access to devices that are running BusyBox. Once access has been gained, the
malware is installed and a Command and Control (C2) server is made aware. It
then awaits further instructions. The C2 server can then be used to launch a flood
of various kinds of traffic, overwhelming a chosen target host. Mirai mostly used
infected CCTV camera devices to carry out the Dyn attack. During Mirai’s scan
for eligible hosts, the malware also checks a "do not mess with" list of servers that
include General Electric, Hewlett Packard, and the U.S. Department of Defense. If
the host is on the list, it is not targeted[17].

2.3.4.2 Brickerbot

Brickerbot is another BusyBox-based strain of malware, it differs from Mirai by brick-
ing target devices. Making them unusable. Brickerbot does this through a series of
BusyBox commands that wipe everything from the devices internal storage through
the Unix "rm" command, along with commands that reconfigure the kernel, and
finally reboot the (now useless) device[17].

2.3.4.3 BASHLITE

BASHLITE is another strain of malware that infects BusyBox-based systems. The
original version in 2014 exploited a vulnerability in the bash shell, this vulnerability
was named "Shellshock" and it exploits devices to form a botnet. BASHLITE is
considered the precursor to Mirai. In 2016 it was reported that one million devices
had been infected. 96 percent of these devices were identified as being IoT of which
95 percent were cameras and DVRs with 4 percent being home routers[23].

9

Chapter 3

Specification and Design

3.1 Overview

The project described throughout this report has one paramount goal; provide users
with a greater understanding of how vulnerable the Internet of Things truly is. This
goal will be achieved through a web application that will allow users to visualise a
simulation of malware being released on a set of real IoT devices. This chapter aims
to explain the requirements necessary to fulfil this goal as well as give readers an
insight into design decisions made as well as the choice of tools, technologies and
resources.

3.2 Requirements

The following section describes all of the functional and non-functional requirements
that are essential and desirable for the system to be built.

Essential

Functional

1. Display devices on a map

Acceptance Criteria Each device has a visual representation of itself on a map
that has been placed in the given location of the device.

Justification This will introduce the ability to be able to visually repre-
sent each devices reactions to the malware being released.

10

2. Display specific device information

Acceptance Criteria When a device marker has been clicked on, information
about the device is such as its IP address and operating
system is displayed.

Justification This gives users a more detailed view of a device to view the
characteristics of a device that will be used by the simulator
to decide if the infection of the device is successful.

3. Simulate the effects of releasing a specified strain of malware

Acceptance Criteria The user is able to selectively release a strain of malware
over a set of devices. The strain selected is released over
each device and feedback powered by the device data is
given both graphically and in a more detailed text view.
Once a simulation is complete the results are then shown
to the user.

Justification This requirement is the projects main goal, the result of
fulfilling this requirement will allow the user to perform
simulations that will demonstrate how vulnerable the In-
ternet of Things is.

4. Display the state of devices in a meaningful way

Acceptance Criteria When a simulation is taking place, the user should be able
to graphically view the state of devices in a way that intu-
itively describes the state of the device.

Justification This will let the user perceive infected devices.

5. A strain of malware should only be attempted to be released on a device that meets the
malware’s target device specification

Acceptance Criteria A strain of malware should have a target device specifica-
tion that gives information on what sort of device it can
infect. When a simulation is executed, the simulation will
compare the malware’s target specification to the specifica-
tion of the device being released on.

Justification This will allow the malware to only be released on devices
that the malware can run on, improving the simulation’s
accuracy.

11

6. A strain of malware should only gain access to a device the device has a high chance of
being vulnerable to an attack vector that the malware is able to pursue

Acceptance Criteria The chance of a pursued attack vector being successful is
determined by the device data provided and statistical find-
ings about the attack vector.

Justification This will allow the malware to only gain access to devices
that are vulnerable to the attack vectors exploited by the
malware, improving the simulation’s accuracy.

7. A relatively short description should be provided for each strain strain of malware that
can be simulated

Acceptance Criteria A page giving a short but informative technical descrip-
tion of each strain of malware that can be simulated on is
provided.

Justification This provides the user with a more detailed view of the
malware they are releasing, including information about
how the malware propagates.

Non-functional

1. The user interface should have a high level of usability and accessibility

Acceptance Criteria The user interface follows Google’s Material Design guide-
lines[12] and meets Nielsen’s usability heuristics[16].

Justification The user interface will have high usability and a modern
elegant design, enriching the users experience.

2. The simulator should allow a large amount of devices to be simulated on with good
performance

Acceptance Criteria The simulator can perform a simulation on >5000 devices
without showing performance issues.

Justification A user may want to simulate on a large amount of devices.

Desirable

Functional

1. A user should be able to specify a location in which to perform an attack

Acceptance Criteria The user can select a country in which to perform an attack.

Justification This will allow users to analyse the vulnerability of devices
within a specific location.

12

2. The user should be able to pause, play and stop simulations

Acceptance Criteria The user is able to pause, play and stop simulations through
the use of buttons.

Justification This will provide the user with the option of looking at
the "state of play" at a specific point in time, or if the
user has incorrectly started a simulation they can stop the
simulation instead of reloading the page.

3. The user should be able to choose the speed of the simulation

Acceptance Criteria The user is able to select a simulation speed from the fol-
lowing options: Normal, 2x, 3x, 5x, 10x, 20x.

Justification If a simulation may be projected to take a long time, the
user can choose to speed up the simulation to their level of
choice.

4. The user should be able to add custom malware

Acceptance Criteria The user can add a custom strain of malware by giving
itss name, the specification of device it targets, the attack
vectors it exploits to gain access to a device and the actions
it performs after infecting a device.

Justification This will allow users to simulate malware against a set of
devices that carries characteristics that may not have been
seen before.

5. The user should be able to add custom devices

Acceptance Criteria A user can add new devices to the current dataset and then
perform simulations against the new dataset of devices.

Justification This can allow users to simulate malware against devices
that may be affiliated with them such as their home network
in some way to see how vulnerable they are.

6. The user should be able to switch between a light and dark user interface

Acceptance Criteria The user can switch between a light and dark colour scheme
at the click of a button. The colour scheme selection should
stay the same when the page is reloaded.

Justification This allows the user to select a colour scheme they deem to
be better from a visual and accessibility point of view.

13

Non-functional

1. Each component should be run in an appropriate cloud computing service.

Acceptance Criteria All client-side and server-side components are run in ap-
propriate services provided by a reliable cloud computing
company such as Amazon Web Services (AWS) or Google
Cloud.

Justification Running each component in a cloud computing service can
help provide high availability, scalability and reliability.

3.3 Design

3.3.1 System Architecture

The application developed as part of this project uses the Model-View-Controller
(MVC) architectural design pattern. This is a commonly used design pattern for web
applications that promotes parallel development and code reuse by decoupling three
major system components; the model, the view and the controller.

Figure 3.1: A diagram of the systems architecture

Figure 3.1 describes the systems architecture. This architecture utilises the MVC
design pattern by using the user interface (UI) as the view component of the system.
The UI then interacts with a RESTful API by sending requests over HTTP, the API
acts as the controller component of the system. The API will then process these
requests by manipulating the model component using business logic. The controller

14

can then respond to the these requests in the correct manner and the UI will render
the updated output. In figure 3.1 there are also three other major components of
the system; the simulator, the data collector/processor and the database. The data
collection and processing module collects and processes the device data and then
stores it within the database. Whenever a request to release a specific strain of
malware is triggered, the API receives the request from the UI and then offloads the
request to the simulator, the simulator contains a knowledge base of different strains
of malware and using this knowledge base the simulator executes a simulation of the
strain of malware being released on the current set of devices within the given criteria.
The simulator creates a simulation object and appends events until the simulation is
complete. The simulation object is then sent back to the user interface. The user
interface then "plays" the simulation by iterating over the events in the simulation
object. Furthermore, this modular approach allows each service to be lightweight
and have it’s own unique, well-defined goal thus simplifying the understanding of the
system and easing maintainability.

3.3.2 User Interface

This section outlines the decisions made when designing the user interface. When
designing the user interface Google’s Material Design guidelines, a "visual language
that synthesizes the classic principles of good design with the innovation and pos-
sibility of technology and science" [12] were followed. Further to following Material
Designs guidelines, this also meant utilising the components and tooling available on
their website (https://material.io). Furthermore, to ensure usability Nielsen’s
usability heuristics[16] were also followed.

Colour Schemes

In order to satisfy the desirable user requirement of the user being "able to switch
between a light and dark user interface", it is necessary to develop two colour schemes.
One light, and one dark. The dark colour scheme can be seen in figure 3.2 and the
light colour scheme in 3.3.

15

https://material.io

Figure 3.2: The dark colour scheme

Figure 3.3: The light colour scheme

Fonts

The fonts shown in figures 3.4 and 3.5 will be used throughout the user interface,
Roboto is the standard typeface on Android and was designed by Google with Material
Design in mind. Roboto Mono is the monospaced addition to the Roboto family, using
a monospaced font would add more of a "command-line vibe" to various aspects of
the system such as the simulation log history.

Maps

I decided to use a map as a means of visualising the devices because this would
allow users to not only analyse how vulnerable IoT devices are but also compare how

16

Figure 3.4: Roboto font Figure 3.5: Roboto Mono font

vulnerable they are in specific locations. The following maps could all potentially be
used as a means of visualising the map to display the devices on. The maps that will
be used in coordination with the dark colour scheme (see figure 3.2) can be seen in
figures 3.6 and 3.7. The maps that will be used in coordination with the light colour
scheme (see figure 3.3) can be seen in figures 3.8 and 3.9. They were all created by
CartoDB[6].

Figure 3.6: DarkMatter map
without labels

Figure 3.7: DarkMatter map
with labels

Figure 3.8: Positron map without
labels

Figure 3.9: Positron map with
labels

17

Artboards

The following artboards shown in figures 3.10, 3.11, 3.12, 3.13 and 3.14 use Material
Design components, the dark colour scheme shown in figure 3.2 and the dark map
shown in figure 3.6. They are how the user interface is portrayed to look from certain
aspects.

Figure 3.10: System state before any malware has been released

18

Figure 3.11: System state before any malware has been released with side-menu closed

Figure 3.12: During a simulation taking place

19

Figure 3.13: After a simulation has taken place

Figure 3.14: Device information displayed from clicking on a device marker

20

3.3.3 Simulator

This section explains the kill chain of events and underlying mathematics necessary
to perform a simulation.

An Adapted Kill Chain

Using the modelled cyber kill chain shown in figure 2.1; a new kill chain inspired by
the previous can be built that contains the correct steps necessary to performing a
simulation.

1. Reconnaissance - Reconnaissance involves observing a device to discover char-
acteristics associated with the device such as its operating system and public-
facing ports. There are various means of performing reconnaissance actively and
passively such as by conducting port scans. Reconnaissance is important as it
allows a strain of malware to determine if a device can be infected. The data
that Shodan will provide contains all the information necessary to determine if
a device can be infected and therefore will allow us to simulate the reconnais-
sance aspect of malware propagation. Therefore, this stage is used to compare
the specification of a device that the malware runs against and the specification
of the device the malware is attempting to infect.

2. Intrusion - At this stage a target device has been identified and so an attempt
to gain access to the device is made using the released malware’s set of attack
vectors that it pursues. We cannot know for certain if a device is accessible
without actually trying to gain access to the device therefore it will be necessary
to come up with the mathematical backing that predicts the probability of a
device being accessible.

3. Exploitation - Once access has been gained to a device, the exploitation stage
then occurs. This, simply put, is where the chosen strain of malware performs
its specific method/s to infect the target device. For example, as discussed in
section 2.3.4.1, Mirai infects devices by exploiting BusyBox commands allowing
the malware to gain control of a device. However, if this stage is reached it is
already proven that the target device is vulnerable and therefore abstracting
the steps taken during this stage down to the one step of "infecting device"
rather than the specific steps a strain of malware may perform is sufficient.

21

4. Action - This stage involves the malware performing its purpose, such as data
exfiltration, denial of service, or encryption for ransom. This stages essentially
combines stages 4-8 shown in figure 2.1. However, for some malware their
purpose is arbitrary and in those cases an abstract "action" will be provided.
For example, malware such as Mirai could be used to perform DDoS attacks
but that is not certain therefore Mirai’s action will be the following - "device
under control by command and control (C2) server". However, malware like
Brickerbot have a defined purpose, in Brickerbot’s case its action would be the
following - "device bricked".

Markov Chain

A Markov chain is "a stochastic model describing a sequence of possible events in
which the probability of each event depends only on the state attained in the previous
event"[9]. This makes it an ideal candidate to encode our stages of the malware kill
chain shown above in section 3.3.3. It will also be necessary to have absorbing states,
these are states which once entered, cannot be left. These purpose of these absorbing
states is to end the current simulation on a device. In 3.15, each state in the Markov
chain can be seen as well as the absorbing states.

22

Figure 3.15: Markov chain for the malware kill chain

In a real-world scenario, events such as losing connection to the targeted device or
being caught by an Intrusion Detection System (IDS) could occur at various states.
However, an assumption can be made that events such as these do not occur. Another
assumption that can be made is that the exploitation and action stages always result
in success. This decision can be made because although the results given may not be
completely accurate with real-world scenarios, the simulation will still allow users to
see the vulnerabilities of IoT devices which is the goal of the project. This is because
an IoT device can still be considered vulnerable if the intrusion stage has resulted
in success. Further work may result in doing research and finding data to support
the possibility of exploitation and action resulting in failure. The table shown in 3.1
details the transition matrix for the Markov chain showing the probability of moving
from one state to another where each cell is P (COL|ROW). Some of the transitions,

23

denoted *, are determined dynamically depending on the data provided.

R RS RF I IS IF E ES EF A AS AF

R 0 * 1− P (RS|R) 0 0 0 0 0 0 0 0 0

RS 0 0 0 1 0 0 0 0 0 0 0 0

RF 0 0 1 0 0 0 0 0 0 0 0 0

I 0 0 0 0 * 1− P (ES|E) 0 0 0 0 0 0

IS 0 0 0 0 0 0 1 0 0 0 0 0

IF 0 0 0 0 0 1 0 0 0 0 0 0

E 0 0 0 0 0 0 0 1 0 0 0 0

ES 0 0 0 0 0 0 0 0 0 1 0 0

EF 0 0 0 0 0 0 0 0 1 0 0 0

A 0 0 0 0 0 0 0 0 0 0 1 0

AS 0 0 0 0 0 0 0 0 0 0 1 0

AF 0 0 0 0 0 0 0 0 0 0 0 1

Table 3.1: Markov chain transition matrix

Predicting Kill Chain Stage Times

The aim of this project is to demonstrate the vulnerabilities of IoT devices but as this
is being done through a simulation a sense of realism is still necessary, one part of this
includes predicting how long each stage of the kill chain may take. However, as no
data is available that can assist with these estimations it will be difficult to predict
these time-frames therefore estimated time-frames have been supplied in the table
below (see table 3.2). These estimations are purely based on personal expectations.
Using personal estimations is not the best solution but this issue will not affect the
projects goal of proving how vulnerable the Internet of Things is.

Min Max

Reconnaissance 0.1 2

Intrusion 2 5

Exploitation 5 10

Action 5 10

Table 3.2: Estimated timings for malware kill chain

24

3.4 Technologies

During this project a variety of technologies will be used. This section aims to provide
brief descriptions of the main technologies utilised and a justification for their usage.

Programming Languages

Python

Python was chosen as a language of choice due to already having a high proficiency
in the language, which was deemed an important characteristic when choosing tech-
nologies to use throughout due to the short time span of the project. Furthermore,
multiple Python web frameworks exist that would be useful to develop the RESTful
API necessary to accommodate conversations between the user interface and database
as well as the user interface and simulator. All python code will be written using
Python 3.

JavaScript

JavaScript was also chosen as a language of choice due to already having a high
proficiency. Further to this reason, it is the most common language for building web
applications, thus JavaScript and JavaScript-based libraries will be used to develop
the user interface component of the application.

Libraries and Frameworks

React

React (reactjs.org) is a JavaScript library that will provide a means of creating the
user interface component of the application with fast render speed. It is one of the
most common libraries for developing user interfaces and also offers createreactapp,
removing the need to configure tools such as Webpack or Babel.

Material-UI

Material-UI is a library containing React components that follow Google’s Material
Design. It contains all of the necessary Material Design components such as Drawer,
SelectField and RaisedButton that would be necessary to implement the designs as
shown in 3.3.2.

25

reactjs.org

Leaflet

Leaflet (leafletjs.com) is an extremely lightweight JavaScript library for interactive
maps. It provides all of the features necessary for the mapping aspect of the user
interface. Paul Le Cam et al have also built a library that offers Leaflet features
as React components (github.com/PaulLeCam/react-leaflet), which is an ideal
solution for integrating the two libraries. Leaflet can also scale, which is necessary in
the case of this project as lots of markers would potentially need to be placed.

Flask

Flask is a web framework that will be used to develop the RESTful API. Flask meets
all of the requirements necessary for the API aspect of the project. Flask-PyMongo
is a library integrated with Flask that will also be useful when implementing commu-
nication between the API and MongoDB database so that database transactions can
be performed.

SimPy

SimPy is a python framework used for process-based discrete-event simulations. This
framework will allow the implementation of the back-end simulator that will generate
simulation objects. The behaviour of malware can be modelled as a process which then
can allow interaction with the SimPy environment. This allows environment timeouts
to be triggered for a set time whenever a specific phase of the malware’s release has
been started. Alternatively, Cooja (contiki-os.org/start.html#start-cooja),
OMNeT++ (omnetpp.org) or any other discrete-event simulator could potentially be
used but SimPy has been chosen because of the fact that it has all of the requirements
necessary to perform simulations, it is highly regarded and it is written in Python;
which would mean that all of the back-end modules could be standardised to using
Python.

Data Storage

MongoDB

MongoDB (mongodb.com) is the ideal candidate for the back-end database. The
NoSQL solution will be able to handle potentially diverse data types contained in
the data retrieved from Shodan and also the ability to scale the project if it ever
became necessary to simulate on a large amount of devices. It also integrates with

26

leafletjs.com
github.com/PaulLeCam/react-leaflet
contiki-os.org/start.html#start-cooja
omnetpp.org
mongodb.com

PyMongo, enabling the ability of database transactions between the database and
back-end server.

Dependency Management and Version Control

venv

venv (virtualenv.pypa.io) allows the creation of an isolated environment to handle
python binaries and dependencies. Therefore, venv will be used for each Python-based
module.

pip

pip (pypi.org/project/pip) provides an easy solution for installing python depen-
dencies and therefore it will also be used for all python-based modules.

yarn

yarn (yarnpkg.com) offers a simplified way of managing projects and dependencies
for JavaScript based applications and so it will be used when developing the user
interface.

git

git (git-scm.com) is the de facto standard for version control. It will provide a way
to manage the whole projects codebase in a more organised fashion.

Tooling

PyCharm

PyCharm (jetbrains.com/pycharm) is a Python-based Integrated Development En-
vironment (IDE). Using PyCharm will allow the development of each Python-based
module with speed and efficiency. PyCharm also provides various features such as
debugging that will come in use during the development of this project.

Visual Studio Code

Visual Studio Code (code.visualstudio.com) will be used to develop the user in-
terface part of the system. It is a highly extensible code editor with a multitude of
features through community plugins as well as an interface for version control and a
debugger.

27

virtualenv.pypa.io
pypi.org/project/pip
yarnpkg.com
git-scm.com
jetbrains.com/pycharm
code.visualstudio.com

ShareLaTeX

To write this document and any other additional documents ShareLaTeX (sharelatex.
com/project) will be used, a LaTeX editor that bypasses the necessities of LaTeX
installation and configuration.

Sketch

Sketch (sketchapp.com) was used to construct the UI designs [21]. Sketch is a design
toolkit that is quickly increasing in popularity for designing user interfaces.

Resources

Shodan

Shodan (shodan.io) is a search engine for internet-connected devices, it is the site
that will be used to retrieve the devices dataset. Shodan also offers an educational
plan that will enable the collection of a necessary amount of data needed to conduct
simulations.

28

sharelatex.com/project
sharelatex.com/project
sketchapp.com
shodan.io

Chapter 4

Implementation

4.1 The Database

As previously discussed, MongoDB was the technology decided upon to use for the
back-end database. The database was only used to store the device data retrieved
from Shodan and devices were only ever retrieved from the database on the initial
load of the user interface using db.devices.find().

4.2 Collecting Data

Dependencies

To suitably manage dependencies for the data collection module venv was used to
create a virtual environment and then pip to install all of the necessary dependencies
as seen below.

certifi==2018.1.18

chardet==3.0.4

click==6.7

click-plugins==1.0.3

colorama==0.3.9

idna==2.6

pymongo==3.6.1

requests==2.18.4

shodan==1.7.7

urllib3==1.22

XlsxWriter==1.0.2

29

The two main dependencies that are used within the data collection module are
pymongo and shodan, pymongo is used to communicate with the MongoDB database
whilst shodan is used to communicate with Shodan’s API.

PyMongo

In this instance, PyMongo was only used to store device data. The following piece of
code shows how the library performs such an action.

client = MongoClient(<INSERT_HOST>, <INSERT_PORT>)

db = client[<DATABASE_NAME]

db[<COLLECTION_NAME>].insert(<DEVICE_DATA>)

Shodan

To retrieve data from Shodan, their python library was used. The library offered a
simplified means of querying for data. Shodan also offered a free student deal which
enabled access to 200,000 query credits; this was more than enough to fulfil the needs
of the project. The following piece of code shows how the library can be used to
execute a query.

api = Shodan(<INSERT_API_KEY>)

results = api.search(<INSERT_SEARCH_QUERY>, page=<INSERT_PAGE_NUMBER>)

Shodan’s API provided the necessities to retrieve the dataset necessary to perform
simulations. For example, to find all Linux devices with telnet (port 23) open the
following search query could be used:

port:"23" os:"Linux"

Processing and Storing Data

Once device data has been retrieved from Shodan it was necessary to first check
how satisfiable the data was, this is done to avoid inserting data with unwanted
characteristics such as sparsity. The satisfiability check involved checking that the
device contained an operating system as well as a location. If the device passed the
satisfiability check it can then be processed into a Device object (see appendix B).
The operating system is checked because most malware have an operating system
that they run on - whether its Windows, Linux or macOS. Therefore, it’s useful to
check that this field is not empty. The location field is checked because the latitude

30

and longitude aspect of the location field is necessary to placing the device on a
map. It was also necessary to store the raw data retrieved from Shodan as during the
implementation of the simulator it became necessary to perform a keyword search
over the raw data, this will be talked about later on. See appendix C for an example
of what a device retrieved from Shodan looks like before it is processed into the Device
object.

4.3 Developing the Simulator

Dependencies

To suitably manage dependencies for the simulator module, venv was once again
used to create a virtual environment and then pip to install all of the necessary
dependencies as seen below.

click==6.7

Flask==0.12.2

Flask-Cors==3.0.3

itsdangerous==0.24

Jinja2==2.10

MarkupSafe==1.0

pymongo==3.6.1

simpy==3.0.10

six==1.11.0

Werkzeug==0.14.1

The three main dependencies at use in the simulation module are Flask, Flask-
Cors, PyMongo and SimPy.

API

Flask was used to implement the RESTful API that was necessary to integrate the
simulator, database and user interface. Flask is simple and lightweight making it an
appropriate choice to implement this aspect of the application. In addition to Flask,
Flask-Cors was also used. Flask-Cors adds a Cross-Origin Resource Sharing (CORS)
mechanism to the web server meaning that access to the API from a server on a
different origin could be allowed. This would become necessary when making requests
from the user interface. Additionally, PyMongo was used in the implementation of the

31

API. PyMongo is a library previously discussed that would allow the API to perform
transactions on the back-end database. A simplified example of Flask and PyMongo
working together can be seen in appendix A.

API Endpoints

The following endpoints are made available by the implemented RESTful API, the
following section outlines each endpoint and gives examples of expected responses.

GET /malware/<name>

This endpoint returns a specific strain of malware dependent on the name parameter
specified. The malware object returned in the response can be seen in appendix D.

GET /malware

This endpoint returns all of the strains of malware contained in a knowledge base of
malware that can be simulated.

GET /devices/<id>

This endpoint returns a device stored in the back-end database with an id equal to
the id parameter given. The device object returned in the response can be seen in
appendix B.

GET /devices

This endpoint returns all devices stored in the back-end database.

POST /simulator

This endpoint returns a simulation object created from running a simulation using
required parameters sent in the request body, the request body and the format of a
simulation object that is returned can be seen below.

Request Body :

{

malware: <MALWARE_NAME>,

devices: <DEVICES>,

params:{

32

location: <LOCATION>

}

}

Format of Response:

{

"id": <ID>,

"request": {

"malware": <MALWARE>,

"devices": <DEVICES>,

"params": <PARAMS>

},

"events": <SIMULATION_EVENTS>,

"statistics": {

"total_devices": <TOTAL_NUMBER_OF_DEVICES>,

"total_infected": <TOTAL_NUMBER_OF_INFECTED_DEVICES>,

"total_clean": <TOTAL_NUMBER_OF_CLEAN_DEVICES>,

"run_time": <RUN_TIME_OF_SIMULATION>

}

}

Simulator

As previously discussed, whenever a POST request is made to the RESTful API, a
simulation using the SimPy framework is triggered according to the given parameters.
To start a simulation a SimPy environment is first created, the set of devices being
run on is then looped through and for each device a Markov chain transition matrix is
generated and then a Markov chain (as seen in 3.15) is run using the transition matrix
as input. The Markov chain returns an ordered list of all visited states, which in this
case is the malware kill chain stages executed. These stages are then looped through
and a SimPy environment process is created which adds a simulation event correlating
to the current stage in the simulations events list, dependant on the running stage an
environment timeout may be triggered to account for the time the stage has taken
(i.e. a reconnaissance stage may take anywhere from 0.1 to 2 seconds). SimPy took
time to understand due to it’s use of generators, an unfamiliar concept. Generator
functions allow the declaration of a function that behaves like an iterator, this means
that it can then be iterated over in a loop.

33

Malware

In order to simulate the release of a strain of malware over a set of devices an encoded
version of the released malware is necessary, this is then given to the simulator as a
parameter. This allows the simulator to easily compare the malware’s specification
against the devices specification during the reconnaissance stage and also allows the
simulator to attempt to gain access to the device using the attack vector that the
malware tries to exploit. Appendix D shows how a malware object is encoded and
appendix E shows an example of Mirai being encoded using the malware object.

Generating a Transition Matrix

When a transition matrix that follows the probabilities shown in the transition matrix
table in 3.1 is generated during the simulation process the transition matrix needed
to know how to generate the values that are dependant on data supplied (denoted *).
The following points explain the way in which they were generated.

• P (RS|R) - The probability of the reconnaissance stage being successful:
This can either be 1 or 0 as a strain of malware can either run on a device
or it cannot. This is usually down to properties such as the operating system
but some malware target other characteristics. For example, Mirai runs on
Linux but also targets specific types of devices such as Modems, Routers and
IP Cameras. Therefore to determine the probability of malware being able
to run on a device the specification of device that malware targets and the
devices specification is compared, if every feature of the malware’s target device
specification is met by the device then the probability of achieving success at
the reconnaissance stage is declared as 1. If not, it is declared as 0. Using the
probability of success, the probability of failure can then be calculated using
1− P (RS|R).

• P (IS|I) - The probability of the intrusion stage being successful:
Using the data provided and further research a probability of success can be
predicted. As discussed in sections 2.3.4.1, 2.3.4.2 and 2.3.4.3 it was mentioned
that Mirai, Brickerbot and BASHLITE brute-force the Telnet protocol using
factory defaults to gain access. Knowing this information a target device can
be analysed to see if it meets the requirements of the attack vector that the
malware exploits (in this instance, is the device running Linux and is port 23

34

open?). If it does, the probability of success can be raised by 0.15. Using statis-
tics gathered related to the attack vector the probability can then be raised
even further. For example, on average 15% of IoT device owners do not change
their factory defaults[20]. This statistic can allow us to up the probability of
success by 0.15. Therefore, if a device meets the requirements of the Telnet
attack vector then the probability of success is declared as 0.3. Using this cal-
culated probability of success, a probability of failure can then be calculated
using 1− P (IS|I).

Running the Markov Chain

Once a transition matrix has been generated, the Markov chain can be run using the
transition matrix as input. A state moves from one state to the next dependant on a
random number generated. Once an absorbing state has been reached the chain will
return an ordered list of visited states. See appendix F for the Markov chain code.

4.4 Building the User Interface

Building the user interface as a web application was an early decision made because
of the fact that the project could then be freely accessible to anyone that wanted to
know the vulnerabilities of IoT devices. However, if it ever became necessary to port
the application to desktop that would be possible using Electron (electronjs.org).
Electron allows the development of desktop applications using web technologies such
as HTML and JavaScript through it’s use of Chromium and Node.js.

Dependencies

To suitably manage dependencies for the user interface module yarn was used. All
of the dependencies used for for the development of the user interface can be seen
below.

"axios": "^0.18.0",

"leaflet": "^1.3.1",

"material-ui": "^0.20.0",

"prop-types": "^15.6.1",

"radium": "^0.24.0",

"react": "^16.3.2",

35

electronjs.org

"react-dom": "^16.3.2",

"react-leaflet": "^1.9.1",

"react-leaflet-div-icon": "^1.0.2",

"react-redux": "^5.0.7",

"react-redux-loading-bar": "^4.0.3",

"react-scripts": "1.0.14",

"react-scrollbar": "^0.5.4",

"redux": "^3.7.2",

"redux-logger": "^3.0.6",

"redux-promise-middleware": "^5.0.0",

"redux-thunk": "^2.2.0"

Components

Using React the user interface was developed in a component-based fashion. This
section details the major components in the user interfaces codebase that are critical
to performing a simulation.

Map

The map component is used to display the Leaflet map with all of the given device
markers on CartoDB’s Dark Matter map shown in figure 3.6.

Menu

The menu component is used to display the side-menu shown in figure 3.10. When
the criteria is given for a simulation using the drop-down lists, a simulation is then
started by pressing the release button.

Device

The device component acts as a marker that can be displayed on the Map component.
Each marker is placed at the location (latitude, longitude) specified within the given
device data. A marker changes colour when hovered and when selected a device
marker displays information about the selected device in a dialog box. The markers
are represented as circles, which is different to the markers shown in figures such as
3.11. This is because leaflet’s more efficient circle markers were used and they do not
allow the use of images as markers. A device markers colour is also dependant on it’s
state in the running simulation. It’s origin colour is white and then if a device gets

36

infected it is changed to red. If a device has suffered an unsuccessful infection then
it’s colour is changed to yellow.

Logger

The logger component acts as the main simulation aspect, it notifies the map whenever
a device has been affected by a simulation so that the map is aware of how to colour
each marker and it also logs all of the simulation events to the screen similarly to
the logging shown in figure 3.12. The logger is essentially the simulation player, it is
given a simulation object with all of the simulation events and it loops through these
events executing them at the correct time each event occurs. Each event logged to
the screen is made up of a timestamp, device endpoint (IP and port), location, device
type, product name, operating system and an event message (i.e. "Device successfully
infected with X").

Result

The result component is displayed after a simulation has finished and looks similar
to the design shown in figure 3.13, it details the statistics of the simulation such as
how many devices were simulated on, infected and clean as well as the run time of
the simulation and it contains a "view logs" button that opens up the simulation logs
in JSON format within another tab.

Redux

Redux was a key part of the user interface implementation. Redux works incredi-
bly well with React because UI can be described as a "function of state" and then
Redux can emit state updates in response to actions[18]. Redux was used to man-
age the retrieval of malware, devices and simulations through async requests made
to the back-end RESTful simulator API. These requests were made using axios, a
Promise-based HTTP client. Understanding the core concepts of Redux took a while
to understand due to their complexity but after thorough reading of the Redux doc-
umentation (redux.js.org), the library was able to be used in a correct manner.

ACTION: Fetch Devices

When the application is first loaded, a "FETCH_DEVICES" action is dispatched to
Redux and an async request using axios is made to the API. This allows Redux to tell
the UI that devices are currently being fetched and because of this an indeterminate

37

redux.js.org

loading bar is displayed. If the request is successful then a "FETCH_DEVICES_FU-
LFILLED" action is dispatched to Redux, the loading bar is no longer displayed and
the UI is able to display the devices as markers on the screen. If the request fails
then a "FETCH_DEVICES_REJECTED" action is dispatched to Redux and the
loading bar is no longer displayed.

ACTION: Fetch Malware

When the menu is first opened, a "FETCH_MALWARE" action is dispatched to
Redux and an async request using axios is made to the API. If the request is successful
then a "FETCH_MALWARE_FULFILLED" action is dispatched to Redux, the UI
displays the malware options within the malware drop-down list in the menu. If
the request fails then a "FETCH_MALWARE_REJECTED" action is dispatched
to Redux.

ACTION: Fetch Simulation

When the release button in the menu is selected, a "FETCH_SIMULATION" action
is dispatched to Redux and an async request using axios is made to the API. This
allows Redux to tell the UI that a simulation is currently being fetched and because
of this an indeterminate loading bar is displayed. If the request is successful then a
"FETCH_SIMULATION_FULFILLED" action is dispatched to Redux, the loading
bar is no longer displayed and the UI is able to start the simulation. If the request
fails then a "FETCH_SIMULATION_REJECTED" action is dispatched to Redux
and the loading bar is no longer displayed.

38

Chapter 5

Quality Assurance

This section outlines how assurances were made over the quality of the product de-
veloped in order to give enough confidence that it had reached a good standard.

5.1 Testing the User Interface

There are a multitude of ways the user interface could have been tested including the
use of automated tests using libraries such as Jest (facebook.github.io/jest/en),
however due to time constraints only manual testing was performed. This section
outlines each test case and their results.

Summary Steps Expected Results Actual Results Status

Clicking the menu
button opens up
the menu

1. Click the menu but-
ton in the top left hand
corner

The menu slides in
from left to right

The menu slides in
from left to right

Passed

Summary Steps Expected Results Actual Results Status

Clicking a device
marker opens up
a dialog box dis-
playing information
about the device
clicked

1. Click a circle device
marker on the map

The device in-
formation dialog
opens with infor-
mation about the
selected device

The device in-
formation dialog
opens with infor-
mation about the
selected device

Passed

39

facebook.github.io/jest/en

Summary Steps Expected Results Actual Results Status

Clicking the release
button starts a
simulation accord-
ing to the given
criteria

1. Open up the menu
2. Fill in the simula-
tion criteria
3. Click the release
button

A simulation starts
according to the
specification given

A simulation starts
according to the
specification given

Passed

Summary Steps Expected Results Actual Results Status

Clicking the infor-
mation button on
the menu opens up
the information di-
alog

1. Open up the menu
2. Click the informa-
tion button

The information di-
alog opens

The information di-
alog opens

Passed

Summary Steps Expected Results Actual Results Status

Clicking the infor-
mation button on
the simulation log-
ger opens up the in-
formation dialog

1. Open up the menu
2. Fill in the simula-
tion criteria
3. Click the release
button
4. Once a simulation
has loaded, click the
information button on
the simulation logs sec-
tion

The information di-
alog opens

The information di-
alog opens

Passed

Summary Steps Expected Results Actual Results Status

Clicking the cancel
button on the
simulation logger
cancels the current
simulation

1. Open up the menu
2. Fill in the simula-
tion criteria
3. Click the release
button
4. Once a simulation
has loaded, click the
cancel button on the
simulation logs section

A simulation is can-
celled and the sys-
tem is returned to
it’s original state

A simulation is can-
celled and the sys-
tem is returned to
it’s original state

Passed

40

Summary Steps Expected Results Actual Results Status

Dragging on the
map with in a spe-
cific direction drags
the map in the cor-
rect direction

1. Click and hold the
map
2. Drag the mouse
from left to right

The map moves in
the left direction

The map moves in
the left direction

Passed

Summary Steps Expected Results Actual Results Status

Once a simulation
ends, the results
screen displays to
the screen

1. Click the menu but-
ton
2. Fill in the simula-
tion criteria
3. Click the release
button
4. Wait for a simula-
tion to finish

The results screen
displays to the
screen

The results screen
displays to the
screen

Passed

Summary Steps Expected Results Actual Results Status

Clicking the view
logs button on the
results dialog opens
up the simulation
logs in a new tab

1. Click the menu but-
ton
2. Fill in the simula-
tion criteria
3. Click the release
button
4. Wait for a simula-
tion to finish
5. Click the view logs
button on the results
screen shown

The simulations
logs open in a new
tab

The simulations
logs open in a new
tab

Passed

Summary Steps Expected Results Actual Results Status

Closing the result
dialog reverts the
system to it’s orig-
inal state

1. Click the menu but-
ton
2. Fill in the simula-
tion criteria
3. Click the release
button
4. Wait for a simula-
tion to finish
5. Exit the result dia-
log by clicking outside
of the dialog window

The system reverts
to it’s original state

The system reverts
to it’s original state

Passed

41

Summary Steps Expected Results Actual Results Status

Running a simula-
tion on 5000 de-
vices shows no per-
formance issues

1. Ensure 5000 devices
are stored in the back-
end database
2. Click the menu but-
ton
3. Fill in the simula-
tion criteria
4. Click the release
button
5. Wait for a simula-
tion to finish

The simulation
completes without
showing any notice-
able performance
issues

The simulation
completes without
showing any notice-
able performance
issues

Passed

42

Chapter 6

Results and Evaluation

6.1 Fulfilment of Requirements

This section outlines all of the requirements and whether they were met in the final
delivered product. For each incomplete requirement, unless otherwise stated, the
requirement is incomplete because of a lack of time.

Essential

Summary Type Status Notes

Display devices on a map Functional Complete Devices are represented on the map as
circle markers

Display specific device in-
formation

Functional Complete Clicking on a device marker opens up
specific device information about the
device clicked on

Simulate the effects of re-
leasing a specified strain of
malware

Functional Complete The user can select a strain of mal-
ware and simulate the release of the
malware of a set of devices, feedback
is given graphically by changing the de-
vice marker colours dependant on the
state of the device as well as in a more
detailed log history

Display the state of de-
vices in a meaningful way

Functional Complete As previously mentioned, the state of a
device is given by changing the colour of
the devices marker with white being the
default colour, yellow being the "failed
to infect" colour and red being the "in-
fected" colour.

A strain of malware
should only be attempted
to be released on a device
that meets the malware’s
specification

Functional Complete The malware’s target specification is
compared with the device data and if
the device meets all of the malware’s
specification it then the next stage of
the kill chain is triggered

43

A strain of malware
should only gain access to
a device if the device has
a highly probable chance
of being vulnerable to one
of the malware’s exploits

Functional Complete Each strain of malware contains a set of
exploits that it uses to try and gain ac-
cess, these exploits are compared with
the device data and a probability is de-
termined

A relatively short descrip-
tion should be provided
for each strain of malware

Functional Complete Whenever a strain of malware is se-
lected in the menu, a link is dis-
played underneath the malware drop-
down menu that when clicked, opens up
a dialog displaying information about
the selected strain

The user interface should
have a high level of usabil-
ity and accessibility

Non-
functional

Complete The user interface meets all of Nielsen’s
usability heuristics and follows Google’s
Material Design guidelines

The simulator should al-
low a large amount of de-
vices to be simulated on
with good performance

Non-
functional

Complete The simulator runs with no perfor-
mance issues on 5000 devices

Table 6.2: Fulfilment of essential requirements
Desirable

Summary Type Status Notes

A user should be able to
specify a location in which
to perform an attack

Functional Complete The user can either select "Worldwide"
or a specific country to simulate an at-
tack in

The user should be able
to pause, play and stop a
simulation

Functional Incomplete The user can stop a simulation but is
unable to pause or play one

The user should be able
to choose the speed of the
simulation

Functional Complete The user can simulate at the following
speeds; normal, 2x, 3x, 5x, 10x and 20x

The user should be able to
add custom malware

Functional Incomplete A user can only simulate using the given
options

The user should be able to
add custom devices

Functional Incomplete A user can only simulate on the devices
stored in the back-end database

The user should be able to
switch between a light and
dark interface

Functional Incomplete The user interface uses the dark inter-
face but the option to switch between
it and the light interface was not imple-
mented

44

Each component should
be run in an appropriate
cloud computing service

Non-
functional

Incomplete During the development phase every
component was ran locally and it was
never necessary to run the components
in appropriate cloud computing services
due to the product not yet reaching the
production stage

Table 6.4: Fulfilment of desirable requirements

6.2 Project Limitations

The main project limitation encountered was a "lack of data". The device data
gathered from Shodan worked great when it came to calculating the probability of
success at the reconnaissance stage of the kill chain detailed in 3.15. Further to this,
after conducting research on malware, their attack vectors and gathering statistics a
probability of success for the intrusion stage in the kill chain was able to be calculated
sufficiently. However, it was impossible to predict success at the exploitation and
action stages as it cannot be known if a target device has security measures in place
such as anti-virus or intrusion detection systems (IDS) and if they do, how many?
If data that gave information on devices and whether malware was able to infect
them and carry out the malware’s objective was available then a prediction on the
probability of success using that data could have been calculated giving the simulation
a more sufficient mathematical backing. Collating this data would have taken a very
long time as access to a sandboxed IoT network and samples of malware would have
been necessary. Due to this limitation, the probability of success at these stages was
set to 1. Furthermore, data detailing the timings of each stage of the malware kill
chain for the strains of malware used in the final implementation was not available.
This meant that an estimation of these times needed to be given. Once again, collating
this data would have taken a long time for the same reason.

6.3 Reflection on Management and Methodology

At the start of the project a decision was made to use Scrum as the project man-
agement methodology because the utilisation of Scrum’s key principles would enable
continuous improvement through constant reflection of progression. Working this
way worked great and reading various Scrum for One resources by authors such as
Alex Andrews from Ten Kettles (tenkettles.com)[2] and Dustin Wax, a previous

45

tenkettles.com

project manager at Lifehack (lifehack.com)[25] enhanced productivity and continu-
ously improved results throughout the projects timespan. Furthermore, splitting each
component up into separate modules as shown in figure 3.1 and using the dependency
management and version control technologies discussed within 3.4 aided management
of the projects codebase which served the project well.

6.4 Assessing the Implementation of Designs

User Interface

The initial user interface designs worked great when it came to implementing them,
the colour scheme and the Dark Matter map supplied by CartoDB worked well to-
gether and integrated with Material Design elements it all connected beautifully.
However, one aspect not taken into account when designing the user interface was
the fact that device markers can layer on top of each other. This can affect the ability
to click on certain device markers (if they are layered underneath another marker).
To fix this a library was found that integrates with React-Leaflet called react-leaflet-
marker-cluster (npmjs.com/package/react-leaflet-markercluster) which clus-
ters nearby markers into one marker which when clicked expands to visibly show all
clustered markers in a spiral fashion. Although this library seemed like it could fix
this problem, using it then brought upon a new problem; how can the state of all
devices be visibly shown during a simulation when some are hidden by marker clus-
ters? As visualising the state of devices was deemed a higher priority than being able
to click on every device marker for a detailed view of the selected device, a decision
was made to not to use the marker cluster library (note: layered markers can still
show their state due to the fact that the opacity of the device markers was set to
0.5). Furthermore, in the designs only the time, IP address and message of each
simulation event are displayed (see figure 3.12). During the implementation phase
this was changed to the layout below.

Time Endpoint Location Type Product OS Message

API

The API ensured a good means of communication between the user interface and
database. However, implementing it as the middleman between the user interface
and the simulator proved to be a bad decision. This is because simulation objects

46

lifehack.com
npmjs.com/package/react-leaflet-markercluster

generated by the simulator and sent back to the user interface can be incredibly
large, and therefore sending them back over HTTP can be very inefficient. A more
appropriate solution would be to setup a WebSocket connection between the client
and server, this would allow the simulator to send frequent messages (or "events"
in our case) to the user interface whenever a simulation is triggered. This would be
much more appropriate and increase efficiency immensely.

Simulator

Designing a malware-specific kill chain and mapping it to the Markov chain that
can be seen in figure 3.15 worked well when it came to the implementation. As dis-
cussed in section 6.2, the Markov chain was limited to only providing mathematically
backed probabilities for the reconnaissance and intrusion stages. However, because of
the way the Markov chain was implemented it will be easy enough to add in mathe-
matically backed probabilities for the exploitation and action stages if it ever became
a possibility.

6.5 Known Bugs

The user interface also contains a few bugs that due to time constraints unfortunately
could not be fixed before submission, these are listed in the table below.

Summary Severity

At end of simulation, when device markers are reset to their orig-
inal state one marker is left at its previous state

Low

Occasionally the menu button and zoom in/out buttons disappear
after a simulation

Medium

Occasionally during simulations, the simulation log does not au-
tomatically scroll to the bottom

Low

The zoom in/out button does not zoom in/out to/from the same
coordinates but instead to coordinates north of the origin

Low

Table 6.5: Known bugs

6.6 Final Product

The final product fulfilled the main projects aim of demonstrating the vulnerabilities
of the Internet of Things. However, if a user could create their own malware and add
their own device dataset that contained devices that might be affiliated to them, the

47

product would be a lot more useful. Further to this, if the mathematical backing of
the project was also improved the project may even have the potential to be used
in industry. However, this was unfortunately not something that was able to be im-
proved due to reasons discussed in section 6.2.

Figure 6.1: A screenshot of the final product in action

In hindsight, the way simulations finish should have been implemented differently.
Currently, when a simulation ends the results screen is shown to the screen, giving
statistics on the simulation and the ability to view the simulation logs. When this
simulation results window is closed, every device marker is returned to it’s default
state rather than being kept at the state it ended the simulation in. This means that
the user can not take time to analyse the "state of play" at the end of a simulation.
This should be changed by not resetting the state of device markers at the end of a
simulation and instead resetting them when a new simulation is started.

A problem that was identified when conducting simulations was that there was no
indication of the progress of a simulation, this would be a useful feature as it would
allow the user to estimate how long a simulation would have left.

Although only a few bugs were noticed (as discussed in section 6.5), confidence in
the system is low because of a lack of testing conducted (see chapter 5). Ideally, more
manual testing should have been administered as well as a good amount of automated
testing such as unit tests and component tests. Additionally, it would have been ideal
to also perform some integration testing.

48

6.7 Usage of Technologies

I believe the selection of technologies at use in this project were adequate, they pro-
vided the necessary means of executing the projects idea in an efficient manner. Usage
of technologies such as MongoDB ensured scalability from a data storage point of view.
Implementing the user interface as a web application using technologies such as React
and Leaflet allowed simulations to be run on 5000 devices, this is largely down to the
use of Leaflet’s circle markers rather than its regular less efficient markers. Further
testing would be necessary to measure how scalable the simulator actually is. Using
the discrete-event simulation library SimPy worked well with generating simulation
objects, however as previously mentioned in section 6.4; sending generated simulation
objects back over HTTP using Flask did not turn out to be the best idea because of
the size that simulation objects can be. Ideally, setting up a means of communication
between the user interface and simulator over a WebSocket connection using SocketIO
(socket.io) would have worked better. SocketIO has a JavaScript-based library and
also a library that integrates with Flask, therefore the future implementation of this
WebSocket connection would be fairly simple.

As previously discussed in section 6.6, confidence in the system is not as high as it
should be due to a lack of testing, to carry out automated tests there are an abundance
of libraries that could have been used. For the unit tests on the python-based modules
pytest (pytest.org) could have been used. To perform component testing on the
user interface, Jest (facebook.github.io/jest) could have been used.

6.8 Analysing the Vulnerability of the Internet of
Things

Using the developed software, studies were conducted by running multiple simula-
tions with three different strains of malware; Mirai (see section 2.3.4.1), Brickerbot
(see section 2.3.4.2) and BASHLITE (see section 2.3.4.3). A decision was made to
primarily focus on botnets because they have proven in recent years to be the most
destructive to IoT (as is proven by the Dyn attack discussed in chapter 1). The results
of these simulations can be seen below in tables 6.7, 6.9 and 6.11. Before each simu-
lation occurred a suitable amount of unique devices were collected from Shodan that
could potentially be vulnerable to the strain of malware being released. As all of the
malware being used to conduct the studies necessary to meet the projects goal runs

49

socket.io
pytest.org
facebook.github.io/jest

on Linux and attempts to gain access using Telnet (port 23) the search parameters
used to collect a dataset of devices (see section 4.2) were:

os:"Linux" port:"23"

Collecting data this way would mean that the reconnaissance stage of the Markov
chain (see section 3.15) would have a high but not definite chance of being successful,
this is due to the fact that these malware target specific types of devices as well.

Releasing Mirai into the Internet of Things

Location Total Number of
Devices

Total Number of
Infected Devices

Percentage of In-
fected Devices

Worldwide 4998 3331 66.64%

UK 144 130 90.02%

USA 2064 1630 78.48%

Canada 47 29 61.7%

Russia 204 116 56.86%

China 147 67 45.57%

France 39 19 48.71%

Germany 46 34 73.91%

Australia 7 3 42.85%

New Zealand 3 1 33.33%

India 46 12 26.01%

Table 6.7: Simulation results for Mirai

Releasing Brickerbot into the Internet of Things

Location Total No. of De-
vices

Total No. of In-
fected Devices

Percentage of In-
fected Devices

Worldwide 4998 3331 66.64%

UK 144 130 90.02%

USA 2064 1630 78.48%

Canada 47 29 61.7%

Russia 204 116 56.86%

China 147 67 45.57%

France 39 19 48.71%

Germany 46 34 73.91%

Australia 7 3 42.85%

50

New Zealand 3 1 33.33%

India 46 12 26.01%

Table 6.9: Simulation results for Brickerbot

Releasing BASHLITE into the Internet of Things

Location Total No. of De-
vices

Total No. of In-
fected Devices

Percentage of In-
fected Devices

Worldwide 4998 3331 66.64%

UK 144 130 90.02%

USA 2064 1630 78.48%

Canada 47 29 61.7%

Russia 204 116 56.86%

China 147 67 45.57%

France 39 19 48.71%

Germany 46 34 73.91%

Australia 7 3 42.85%

New Zealand 3 1 33.33%

India 46 12 26.01%

Table 6.11: Simulation results for BASHLITE
The results shown in tables 6.7, 6.9 and 6.11 the results are the same because

all three strains of malware have the same requirements and use the same means of
access. They were able to infect 3331 devices out of 4998 devices. With the Internet
of Things making up almost eight billion devices[10], 4998 devices is an incredibly
small sample of the network. Nonetheless, these results still prove that the IoT is
vulnerable as there is a lot that can be done with 3331 insecure devices such as form
a botnet and perform a DDoS attack on networks or critical infrastructure as is the
purpose of Mirai and BASHLITE. Or alternatively, the devices could be bricked - as
is Brickerbot’s purpose. It should be noted that the these results do not show an
accurate ratio of IoT devices in the given countries as that is not the purpose of the
data collected from these simulations. The purpose of these results is to show that
from a near 5000 devices collected, 66.64% of them were found to be probabilistically
vulnerable. One last point worth making is that from the 2064 devices found in the
United States, Mirai was able to gain access and exploit 78.48% of them.

51

Furthermore, the results produced that are shown in tables 6.7, 6.9 and 6.11
indicate how insecure the Internet of Things is which is the goal of this project.

6.9 Analysing the Accuracy of Simulation Results

Simulation’s are powered by the data provided by Shodan and public information
available on specific malware. Therefore simulations are only as good as the data
available, for the most part the data from Shodan worked great and additional pro-
cessing during the data collection phase ensured quality of data. Conducting manual
analysis of simulation logs given from simulations improved confidence slightly in the
results being given as these logs showed expected outcomes. For example, after simu-
lating the release of Mirai against devices in the United Kingdom a sample of the logs
generated that can be seen in appendix G shows the correct stages were executed.
However, it is hard to determine why the intrusion stage (the event with the message,
"Attempting to gain access to device") was successful, automated testing would help
in this regard.

To predict the probability of the intrusion stage being successful for malware such
as Mirai, Brickerbot and BASHLITE that bruteforce Telnet access using a list of
default usernames and passwords (as discussed in section 2.3.4.1, 2.3.4.2 and 2.3.4.3)
a statistic on the percentage of IoT device owners that do not change factory defaults
was used. This allowed us to predict success with reasonable mathematical backing
and in-turn, find 3331 vulnerable devices (see tables 6.7, 6.9 and 6.11). However,
because SSH Communications Security recommends completely disowning Telnet and
replacing the old protocol with the more secure and more recent, SSH. This is because
a Telnet session between the client and the server is not encrypted and anyone with
access to the TCP/IP packet flow between the communicating hosts can reconstruct
the data that flows between the endpoints and read the messages, including the
usernames and passwords that are used to log in to the remote machine[24]. This
means that although the way successful access is predicted and calculated may not be
adequate, devices can still be considered vulnerable if they are even running Telnet.
Therefore, of the 4998 devices collected before gathering simulation results in 6.8 all
4998 can be considered vulnerable as they were all found to have had Telnet (port
23) open. The reason this is being mentioned is because the goal of this project was
to demonstrate the vulnerabilities of the Internet of Things.

One of the main limitations as discussed in section 6.2 was a "lack of data" and
this is the case again when comparing the simulation results in section 6.8 with

52

real results. If access to a dataset that identified devices that had been successfully
infected by specific strains of malware was available then the data could be compared
with simulation results to measure confidence.

Overall, confidence is lacking in the accuracy of current simulation results because
of the reasons discussed but there are many ways confidence can be gained in the
future as will be discussed in the next section.

53

Chapter 7

Future Work

7.1 Add Additonal Malware

Adding additional strains of malware to the malware selection criteria would allow
users to conduct further studies using a range of diverse malware. These further stud-
ies could result in statistical findings answering questions such as "which operating
system is the most vulnerable?".

7.2 Exception Handling

One aspect of the implementation that focus was not given to was exception handling,
in the long run this could cause problems and so it is pivotal that back-end server
exceptions that could possibly occur are handled appropriately and relayed back to the
user interface with a human-readable message. What if the database is not up? How
will the devices be retrieved? The user should be made aware of such an occurrence
otherwise they will not be able to understand why the application is not functioning
correctly.

7.3 Improving Markov Chain

Collecting more data that could assist with improving the Markov chain transition
probabilities would improve the mathematical backing of the simulation and give
the application more substance. In order to collate the appropriate data it would
be necessary to test malware in sandboxed IoT networks. This would then mean
data could be collected that could then be used in correlation with machine learning
methodologies to predict the kill chain stage timings and transition probabilities for
a given device.

54

7.4 Implementing Play/Pause Functionality

The implementation of play/pause functionality was a desirable requirement, the
addition of this functionality would allow users to analyse the "state of play" at a
specific point in time. This could aid in any analysis being conducted by the user or
allow the user to pause a simulation and come back and play the simulation at a later
point.

7.5 Implementing Simulation Progress

A feature that identifies the progress a simulation has made and estimates how long
a simulation has left as discussed in section 6.6 would be extremely useful, especially
for simulations on large amounts of devices because the user may not want to watch
a whole simulation but instead know when to come back at the end of one.

7.6 Further Rigorous Testing

Further rigorous testing would improve confidence in the implementation and simu-
lation results. As mentioned in section 6.9, automated testing could help to back-up
simulation results statistically which would add an additional level of trust in the
simulator.

7.7 Providing Possible Solutions to Vulnerabilities

Currently, the simulator just infects devices but does not provide information on why
the device was infected. Adding reasons for infection and solutions to these given
reasons could provide the user with a means of being able to counter vulnerabilities
found.

7.8 Offering Personal User Profiles

User profiles would offer a way of personalising a users simulator, this section explains
multiple ways this could be useful.

• Adding the ability to store previous simulations would allow the user to look
back and run previous simulations.

55

• Implementing the addition of custom device insertion (and/or bulk device inser-
tion) would allow the user to run simulations on a device set they have collated.

• Allowing the user to create custom malware would allow them to run simulations
with strains of malware that may not already exist, which could in turn provide
useful information to improve security before a similar strain of malware is let
loose in the "wild".

• Adding alternative colour schemes such as the light scheme shown in figure
3.3 would allow the user to choose a colour scheme they find most usable and
aesthetically pleasing.

56

Chapter 8

Conclusions

At the start of this project the main goal was to demonstrate the vulnerabilities of the
Internet of Things. After examining how this could be done in an original and useful
manner, a quote was found as mentioned in chapter 1. The quote explains that the
fight against malware is missing a key ingredient; the implementation of software that
simulates malware propagation. This led to the development of software that could
simulate the propagation of malware on real internet-connected device data provided
by Shodan (shodan.io).

Overall, the software developed succeeded in supplying the means to satisfy the
projects main goal. The final product can be used to simulate a strain of malware
being released on a set of devices and produce mathematically backed results. This
enabled the ability to simulate on real IoT device data as shown in section 6.8, these
simulations produced alarming results that definitely demonstrate how vulnerable
the IoT is. However, the accuracy of these results can be questioned due to multiple
reasons; these reasons are discussed in section 6.9. A part of the final product that was
particularly pleasing was how much the user interface designs resembled the original
designs; this meant that the initial designs were well designed to fulfil the projects
requirements.

The project also resulted in useful work being done towards creating a piece of
software that can simulate malware propagation such as the the malware kill chain
model (inspired by the cyber kill chain as shown in figure 2.1) and the encoding of
the model in a Markov chain that allows the addition of probability to the simulation.
This model can then be used in correlation with device data to determine success. The
user interface developed also provides an exceptional means of conducting simulations
whilst also providing an enriching simulation experience. However as mentioned in
chapter 6, confidence is still lacking in regard to the implementation due to a lack of
testing and also a lack of data to provide accurate mathematically backed results.

57

shodan.io

Furthermore, working on this project has provided a sense of belief that the im-
plementation of a malware propagation simulator that provides accurate results is
possible and it is hoped that this study will stimulate further investigations in this
field.

58

Chapter 9

Reflections on Learning

Using Scrum as the project methodology for this project allowed continuous improve-
ment through constant reflection of progression. This enabled the use of "double-loop
learning", a term coined by Chris Argyris. By retrospectively adapting assumptions,
concepts and ideas dependant on realisations made from reflecting the project was
able to repeatedly show signs of improvement. An example of this would be that
when the implementation of the simulator was being conducted no discrete-event
simulation library was being used initially, this proved to be highly unproductive and
so the implementation was paused, further research was conducted on discrete-event
simulation libraries and SimPy (simpy.readthedocs.io) was found. This increased
productivity and enabled me to come more familiar with simulation best practices.

Throughout the large majority of the time spent on this project, the project
was viewed as more of a software/web development-based project rather than a re-
search project. In hindsight, more focus should have been aimed towards providing a
more substantial mathematical backing rather than developing a fully fledged piece
of graphical web-based software as well. It would have been more than adequate
to completely scrap the user interface and develop the simulator as a command-line
application; this would have allowed me to spend the time necessary to collate data
that would have enhanced the accuracy of results.

After reflecting on the final product (see section 6.6) and results produced from
performing simulations (see sections 6.8 and 6.9) an abundance of features and fur-
ther ways in which the mathematical backing of simulations can be improved were
discovered (see chapter 7).

Once results had been produced from simulations the next step was deciding how
to represent these results in a way that could demonstrate best how vulnerable the
Internet of Things is. This required some "trial and error" and reflection of different

59

simpy.readthedocs.io

solutions, eventually the result format shown in tables 6.7, 6.9 and 6.11 was decided
on.

Beforehand, only a basic understanding of the Internet of Things, malware and
how malware propagates through networks and systems was known. This project has
improved knowledge and understanding of these fields and provided a greater passion
for cyber security as a whole. Furthermore, this project has also given the author the
experience of writing an academic paper - an experience found thoroughly enriching
and rewarding.

60

Appendix A

from flask import Flask

from flask_cors import CORS

from pymongo import MongoClient

app = Flask(__name__)

CORS(app)

client = MongoClient(<INSERT_HOST>, <INSERT_PORT>)

db = client[<INSERT_DATABASE_NAME>]

@app.route(’/’)

def index():

collection = db[<COLLECTION_NAME>]

documents = collection.find()

return documents

61

Appendix B

import json

class Device:

def __init__(self, raw_result):

self.ip = None

self.location = None

self.os = None

self.port = None

self.type = None

self.product = None

self.raw_result = raw_result

self.process()

def process(self):

if ’ip_str’ in self.raw_result and self.raw_result[’ip_str’]:

self.ip = self.raw_result[’ip_str’]

if ’location’ in self.raw_result and self.raw_result[’location’]:

self.location = self.raw_result[’location’]

if ’os’ in self.raw_result and self.raw_result[’os’]:

self.os = self.raw_result[’os’]

if ’devicetype’ in self.raw_result and self.raw_result[’devicetype’]:

self.type = self.raw_result[’devicetype’]

if ’product’ in self.raw_result and self.raw_result[’product’]:

self.product = self.raw_result[’product’]

if ’port’ in self.raw_result and self.raw_result[’port’]:

self.port = self.raw_result[’port’]

62

return self

Checks whether the device data reaches satisfiable standard to simulate on

def is_satisfiable(self):

if self.os:

if self.location:

if self.location[’longitude’] and self.location[’latitude’]:

return True

return False

def to_json(self):

return json.loads(self.to_json_str())

def to_json_str(self):

return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4)

63

Appendix C

{

’_shodan’: {

’options’: {},

’id’: None,

’module’: ’telnet’,

’crawler’: ’5faf2928ceb560cb4276cc1b4660b2d763cc6397’

},

’hash’: 0,

’os’: ’Linux 2.6.x’,

’ip’: 1137827181,

’isp’: ’Plateau Telecommunications Incorporated’,

’port’: 23,

’hostnames’: [’067-209-221-109.plateautel.net’],

’link’: ’Ethernet or modem’,

’location’: {

’city’: ’Clayton’,

’region_code’: ’NM’,

’area_code’: 575,

’longitude’: -103.355,

’country_code3’: ’USA’,

’country_name’: ’United States’,

’postal_code’: ’88415’,

’dma_code’: 634,

’country_code’: ’US’,

’latitude’: 36.4016

},

’timestamp’: ’2018-05-10T05:21:29.287640’,

64

’domains’: [’plateautel.net’],

’org’: ’Plateau Telecommunications Incorporated’,

’data’: ’’,

’asn’: ’AS21782’,

’transport’: ’tcp’,

’ip_str’: ’67.209.221.109’

}

65

Appendix D

class Malware:

def __init__(self, name, specification, attack_vectors, actions, info):

self.name = name

self.specification = specification

self.attack_vectors = attack_vectors

self.actions = actions

self.info = info

66

Appendix E

Malware(

"Mirai",

{

"os": "Linux",

"keywords": [

[

"Router",

"Modem",

"Camera",

"IP Camera",

"IPCamera",

"Netcam",

"linksys",

"netgear",

"Server: SQ-WEBCAM",

"linux upnp avtech",

"webcamxp"

]

]

},

[

{

’id’: ’telnet’,

’type’: ’bruteforce’,

’requirements’: {

’os’: ’Linux’,

’port’: 23

67

},

’probability_of_success’: 0.15,

’reason’: ’Open Telnet port using default

username/password combination’

}

],

"Device under control by command and control server",

"Mirai was the strain of malware used to perform the

famous Dyn attack. It works by scanning the internet

for hosts with an open telnet port (TCP port 23).

Once a host is identified it uses a list of default

usernames and passwords to gain access to devices

that are running BusyBox. Once access has been gained,

the malware is installed and a Command and Control (C2)

server is made aware. It then awaits further instructions.

The C2 server can then be used to launch a flood of

various kinds of traffic, overwhelming the a target host.

Mirai mostly used infected CCTV camera devices to carry

it out the Dyn attack. During it’s scan for eligible

hosts, Mirai also checks a ’do not mess with’ list of

servers that include General Electric, Hewlett Packard,

and the U.S. Department of Defense. If the host is on

the list, it is not targeted."

)

68

Appendix F

import random

class MarkovChain(object):

def __init__(self, origin, transition_matrix):

self.visited_states = [origin]

self.current_state = origin

self.transition_matrix = transition_matrix

Seeding helps to reproduce results

random.seed(42)

def run(self):

running = True

while running:

if self.at_absorbing_state():

running = False

else:

self.move()

def move(self):

legal_transitions = self.transition_matrix[self.current_state]

r = random.uniform(0, 1)

next_state = None

cumulative_probability = 0.0

69

for transition in legal_transitions:

transition_probability = legal_transitions[transition]

cumulative_probability += transition_probability

if r < cumulative_probability:

next_state = transition

break

self.current_state = next_state

self.visited_states.append(self.current_state)

def at_absorbing_state(self):

available_transitions = self.transition_matrix[self.current_state]

if self.current_state in available_transitions:

if available_transitions[self.current_state] == 1:

return True

70

Appendix G

{

"time": "0:36:59",

"endpoint": "88.211.68.169:23",

"location": {

"city": "Dulwich",

"region_code": "M8",

"area_code": null,

"longitude": -0.08330000000000837,

"country_code3": "GBR",

"country_name": "United Kingdom",

"postal_code": "SE21",

"dma_code": null,

"country_code": "GB",

"latitude": 51.44999999999999

},

"type": null,

"product": null,

"os": "Linux 3.x",

"message": "Performing reconnaissance on device"

},

{

"time": "0:37:00",

"endpoint": "88.211.68.169:23",

"location": {

"city": "Dulwich",

"region_code": "M8",

"area_code": null,

71

"longitude": -0.08330000000000837,

"country_code3": "GBR",

"country_name": "United Kingdom",

"postal_code": "SE21",

"dma_code": null,

"country_code": "GB",

"latitude": 51.44999999999999

},

"type": null,

"product": null,

"os": "Linux 3.x",

"message": "Device meets specification set by malware"

},

{

"time": "0:37:00",

"endpoint": "88.211.68.169:23",

"location": {

"city": "Dulwich",

"region_code": "M8",

"area_code": null,

"longitude": -0.08330000000000837,

"country_code3": "GBR",

"country_name": "United Kingdom",

"postal_code": "SE21",

"dma_code": null,

"country_code": "GB",

"latitude": 51.44999999999999

},

"type": null,

"product": null,

"os": "Linux 3.x",

"message": "Attempting to gain access to device"

},

{

"time": "0:37:05",

"endpoint": "88.211.68.169:23",

72

"location": {

"city": "Dulwich",

"region_code": "M8",

"area_code": null,

"longitude": -0.08330000000000837,

"country_code3": "GBR",

"country_name": "United Kingdom",

"postal_code": "SE21",

"dma_code": null,

"country_code": "GB",

"latitude": 51.44999999999999

},

"type": null,

"product": null,

"os": "Linux 3.x",

"message": "Access successfully gained to device"

},

{

"time": "0:37:05",

"endpoint": "88.211.68.169:23",

"location": {

"city": "Dulwich",

"region_code": "M8",

"area_code": null,

"longitude": -0.08330000000000837,

"country_code3": "GBR",

"country_name": "United Kingdom",

"postal_code": "SE21",

"dma_code": null,

"country_code": "GB",

"latitude": 51.44999999999999

},

"type": null,

"product": null,

"os": "Linux 3.x",

"message": "Attempting to infect device"

73

},

{

"time": "0:37:11",

"endpoint": "88.211.68.169:23",

"location": {

"city": "Dulwich",

"region_code": "M8",

"area_code": null,

"longitude": -0.08330000000000837,

"country_code3": "GBR",

"country_name": "United Kingdom",

"postal_code": "SE21",

"dma_code": null,

"country_code": "GB",

"latitude": 51.44999999999999

},

"type": null,

"product": null,

"os": "Linux 3.x",

"message": "Device successfully infected with Mirai"

}

74

References

[1] Adam Entous, Ellen Nakashima and Miller, Greg. Secret CIA assessment says
Russia was trying to help Trump win White House. 2016. url: https://www.
washingtonpost.com/world/national-security/obama-orders-review-
of- russian- hacking- during- presidential- campaign/2016/12/09/
31d6b300-be2a-11e6-94ac-3d324840106c_story.html?noredirect=on&
utm_term=.b37813786a0b. (Accessed on 2018-05-07.

[2] Andrews, Alex. Scrum Of One: How to Bring Scrum into your One-Person
Operation. 2017. url: https://www.raywenderlich.com/162654/scrum-
one-bring-scrum-one-person-operation. (Accessed on 2018-05-07.

[3] BBC. Cyber-attack: US and UK blame North Korea for WannaCry. 2017. url:
http://www.bbc.co.uk/news/world-us-canada-42407488. (Accessed on
2018-05-07.

[4] BBC. The Interview: A guide to the cyber attack on Hollywood. 2014. url:
http://www.bbc.co.uk/news/entertainment-arts-30512032. (Accessed
on 2018-05-07.

[5] BBC. Timeline: How Stuxnet attacked a nuclear plant. url: http://www.bbc.
co.uk/timelines/zc6fbk7. (Accessed on 2018-05-07.

[6] CartoDB. Introducing Positron and Dark Matter Basemaps from CartoDB.
2014. url: https://carto.com/blog/getting-to-know-positron-and-
dark-matter/. (Accessed on 2018-02-10).

[7] Chirgwin, Richard. Equifax reveals full horror of that monstrous cyber-heist of
its servers. 2018. url: https://www.theregister.co.uk/2018/05/08/
equifax_breach_may_2018/. (Accessed on 2018-05-07.

[8] CNN. 2016 Presidential Campaign Hacking Fast Facts. 2018. url: https :
//edition.cnn.com/2016/12/26/us/2016-presidential-campaign-
hacking-fast-facts/index.html. (Accessed on 2018-05-07.

[9] Dictionaries, Oxford. Definition of Markov Chain in US English. url: https:
//en.oxforddictionaries.com/definition/us/markov_chain. (Accessed
on 2018-05-03).

[10] Gartner. Gartner Says 8.4 Billion Connected ’Things’ Will Be in Use in 2017,
Up 31 Percent From 2016. 2017. url: https://www.gartner.com/newsroom/
id/3598917. (Accessed on 2018-01-29).

75

https://www.washingtonpost.com/world/national-security/obama-orders-review-of-russian-hacking-during-presidential-campaign/2016/12/09/31d6b300-be2a-11e6-94ac-3d324840106c_story.html?noredirect=on&utm_term=.b37813786a0b
https://www.washingtonpost.com/world/national-security/obama-orders-review-of-russian-hacking-during-presidential-campaign/2016/12/09/31d6b300-be2a-11e6-94ac-3d324840106c_story.html?noredirect=on&utm_term=.b37813786a0b
https://www.washingtonpost.com/world/national-security/obama-orders-review-of-russian-hacking-during-presidential-campaign/2016/12/09/31d6b300-be2a-11e6-94ac-3d324840106c_story.html?noredirect=on&utm_term=.b37813786a0b
https://www.washingtonpost.com/world/national-security/obama-orders-review-of-russian-hacking-during-presidential-campaign/2016/12/09/31d6b300-be2a-11e6-94ac-3d324840106c_story.html?noredirect=on&utm_term=.b37813786a0b
https://www.washingtonpost.com/world/national-security/obama-orders-review-of-russian-hacking-during-presidential-campaign/2016/12/09/31d6b300-be2a-11e6-94ac-3d324840106c_story.html?noredirect=on&utm_term=.b37813786a0b
https://www.raywenderlich.com/162654/scrum-one-bring-scrum-one-person-operation
https://www.raywenderlich.com/162654/scrum-one-bring-scrum-one-person-operation
http://www.bbc.co.uk/news/world-us-canada-42407488
http://www.bbc.co.uk/news/entertainment-arts-30512032
http://www.bbc.co.uk/timelines/zc6fbk7
http://www.bbc.co.uk/timelines/zc6fbk7
https://carto.com/blog/getting-to-know-positron-and-dark-matter/
https://carto.com/blog/getting-to-know-positron-and-dark-matter/
https://www.theregister.co.uk/2018/05/08/equifax_breach_may_2018/
https://www.theregister.co.uk/2018/05/08/equifax_breach_may_2018/
https://edition.cnn.com/2016/12/26/us/2016-presidential-campaign-hacking-fast-facts/index.html
https://edition.cnn.com/2016/12/26/us/2016-presidential-campaign-hacking-fast-facts/index.html
https://edition.cnn.com/2016/12/26/us/2016-presidential-campaign-hacking-fast-facts/index.html
https://en.oxforddictionaries.com/definition/us/markov_chain
https://en.oxforddictionaries.com/definition/us/markov_chain
https://www.gartner.com/newsroom/id/3598917
https://www.gartner.com/newsroom/id/3598917

[11] Goodin, Dan. PlayStation Network breach will cost Sony $171m. 2011. url:
https://www.theregister.co.uk/2011/05/24/sony_playstation_

breach_costs/. (Accessed on 2018-05-07.

[12] Google. Material Design. 2014. url: https://material.io/guidelines/
material-design/introduction.html. (Accessed on 2018-02-09).

[13] Hospelhorn, Sarah. The Cyber Kill Chain or: how I learned to stop worrying
and love data breaches. 2016. url: https://blog.varonis.com/the-cyber-
kill-chain-or-how-i-learned-to-stop-worrying-and-love-data-
breaches/. (Accessed on 2018-05-07.

[14] Microsoft. Defining Malware: FAQ. 2003. url: https://technet.microsoft.
com/en-us/library/dd632948.aspx. (Accessed on 2018-05-07.

[15] Microsoft. IoT for Healthcare. url: https://www.microsoft.com/en-gb/
internet-of-things/healthcare. (Accessed on 2018-05-07.

[16] Nielsen, Jakob. 10 Usability Heuristics for User Interface Design. 1995. url:
https : / / www . nngroup . com / articles / ten - usability - heuristics/.
(Accessed on 2018-05-09.

[17] Perry, J Steven. Anatomy of an IoT malware attack. 2017. url: https://www.
ibm.com/developerworks/library/iot-anatomy-iot-malware-attack/.
(Accessed on 2018-05-07.

[18] Redux. Usage with React. url: https://redux.js.org/basics/usage-
with-react. (Accessed on 2018-05-04).

[19] Rey, Angel MartÃŋn del. Mathematical modeling of the propagation of malware:
a review. 2015. url: https://onlinelibrary.wiley.com/doi/pdf/10.
1002/sec.1186. (Accessed on 2018-05-05.

[20] Shah, Sooraj. 15 per cent of IoT devices owners don’t change the default pass-
word. 2017. url: https://www.theinquirer.net/inquirer/news/3012365/
15-per-cent-of-iot-devices-owners-dont-change-the-default-
password. (Accessed on 2018-05-09.

[21] Sketch. A toolkit for designing user interfaces. 2008. url: https : / / www .
sketchapp.com/. (Accessed on 2018-02-09).

[22] Solon, Olivia and Hern, Alex. ’Petya’ ransomware attack: what is it and how
can it be stopped? 2017. url: https://www.theguardian.com/technology/
2017/jun/27/petya-ransomware-cyber- attack-who- what- why-how.
(Accessed on 2018-05-07.

[23] Spring, Tom. Bashlite Family of Malware Infects 1 Million IoT Devices. 2016.
url: https://threatpost.com/bashlite-family-of-malware-infects-
1-million-iot-devices/120230/. (Accessed on 2018-05-09.

[24] SSH. Telnet - and SSH as a Secure Alternative. 2018. url: https://www.ssh.
com/ssh/telnet. (Accessed on 2018-05-09.

76

https://www.theregister.co.uk/2011/05/24/sony_playstation_breach_costs/
https://www.theregister.co.uk/2011/05/24/sony_playstation_breach_costs/
https://material.io/guidelines/material-design/introduction.html
https://material.io/guidelines/material-design/introduction.html
https://blog.varonis.com/the-cyber-kill-chain-or-how-i-learned-to-stop-worrying-and-love-data-breaches/
https://blog.varonis.com/the-cyber-kill-chain-or-how-i-learned-to-stop-worrying-and-love-data-breaches/
https://blog.varonis.com/the-cyber-kill-chain-or-how-i-learned-to-stop-worrying-and-love-data-breaches/
https://technet.microsoft.com/en-us/library/dd632948.aspx
https://technet.microsoft.com/en-us/library/dd632948.aspx
https://www.microsoft.com/en-gb/internet-of-things/healthcare
https://www.microsoft.com/en-gb/internet-of-things/healthcare
https://www.nngroup.com/articles/ten-usability-heuristics/
https://www.ibm.com/developerworks/library/iot-anatomy-iot-malware-attack/
https://www.ibm.com/developerworks/library/iot-anatomy-iot-malware-attack/
https://redux.js.org/basics/usage-with-react
https://redux.js.org/basics/usage-with-react
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1186
https://onlinelibrary.wiley.com/doi/pdf/10.1002/sec.1186
https://www.theinquirer.net/inquirer/news/3012365/15-per-cent-of-iot-devices-owners-dont-change-the-default-password
https://www.theinquirer.net/inquirer/news/3012365/15-per-cent-of-iot-devices-owners-dont-change-the-default-password
https://www.theinquirer.net/inquirer/news/3012365/15-per-cent-of-iot-devices-owners-dont-change-the-default-password
https://www.sketchapp.com/
https://www.sketchapp.com/
https://www.theguardian.com/technology/2017/jun/27/petya-ransomware-cyber-attack-who-what-why-how
https://www.theguardian.com/technology/2017/jun/27/petya-ransomware-cyber-attack-who-what-why-how
https://threatpost.com/bashlite-family-of-malware-infects-1-million-iot-devices/120230/
https://threatpost.com/bashlite-family-of-malware-infects-1-million-iot-devices/120230/
https://www.ssh.com/ssh/telnet
https://www.ssh.com/ssh/telnet

[25] Wax, Dustin. Scrum for One. url: https://www.lifehack.org/articles/
featured/scrum-for-one.html. (Accessed on 2018-05-07.

[26] Woolf, N. DDoS attack that disrupted internet was largest of its kind in history,
experts say. 2016. url: https://www.theguardian.com/technology/2016/
oct/26/ddos-attack-dyn-mirai-botnet. (Accessed on 2018-02-02).

77

https://www.lifehack.org/articles/featured/scrum-for-one.html
https://www.lifehack.org/articles/featured/scrum-for-one.html
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet
https://www.theguardian.com/technology/2016/oct/26/ddos-attack-dyn-mirai-botnet

	Introduction
	Background
	The Internet of Things (IoT)
	An Introduction to IoT
	An Anatomy of an IoT Device
	IoT; Risk or Reward?

	The Rise of the Cyber Threat
	An Introduction to Cyber Attacks
	Who is the Adversary?
	A Brief History of Cyber Attacks

	Malware, the Ultimate Cyber Weapon
	The Cyber Kill Chain
	An Anatomy of IoT Malware
	Countermeasures
	Famous IoT Malware
	Mirai
	Brickerbot
	BASHLITE

	Specification and Design
	Overview
	Requirements
	Design
	System Architecture
	User Interface
	Simulator

	Technologies

	Implementation
	The Database
	Collecting Data
	Developing the Simulator
	Building the User Interface

	Quality Assurance
	Testing the User Interface

	Results and Evaluation
	Fulfilment of Requirements
	Project Limitations
	Reflection on Management and Methodology
	Assessing the Implementation of Designs
	Known Bugs
	Final Product
	Usage of Technologies
	Analysing the Vulnerability of the Internet of Things
	Analysing the Accuracy of Simulation Results

	Future Work
	Add Additonal Malware
	Exception Handling
	Improving Markov Chain
	Implementing Play/Pause Functionality
	Implementing Simulation Progress
	Further Rigorous Testing
	Providing Possible Solutions to Vulnerabilities
	Offering Personal User Profiles

	Conclusions
	Reflections on Learning
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	Appendix
	References

