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Abstract

This project sought to build a type of machine learning model for classifica-
tion known as a Support Vector Machine, with the goal of classifying expert
anaesthetists and non-expert/non-anaesthetists. The model was trained and
tested on features extracted from gaze data collected for 8 expert anaes-
thetists and 7 other subjects with no such expertise. These subjects were
asked to participate in a viewing exercise in which they would be shown a
series of videos depicting scenes common in Anaesthetics, with each scene
containing an error that would be difficult to point out without a degree of
knowledge about the field.

The features used for classification are mainly concerned with how the
subject focuses while viewing each clip, for how long, how often etc.. By
applying the dimensionality reduction method Principal Component Analysis
to the feature data, and oversampling the resulting data to pad out the
feature space, the classifier was able to obtain an average of 90% accuracy
for each of 14 clips in total.
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Chapter 1

Introduction

1.1 Motivation

Humans use their eyes for the majority of tasks, no matter how menial or
complex, how we see our environment greatly affects our decisions as to
how to interact with it. In modern science, it has proved very effective
to analyse the gaze of a subject as they participate in an experiment, not
only to measure their attention, but also their reactions, intentions and even
emotions[1]. Human-Computer Interaction particularly takes advantage of
this, using eye tracking analysis to improve upon system design [2].

Rather recently, in the field of Machine Learning, interesting discoveries
have been made by training machines on data gathered by recording various
subjects’ eyes as they carry out a task [3]. With classification being the most
pertinent. Identifying a subject as a part of one of many groups is a problem
relevant in many different fields, from viewer demographics for websites, to
people from different professional backgrounds for viewing exercises.

One such application of eye tracking in machine learning is Medicine [4].
Medical staff are frequently required to make on-the-spot decisions that have
serious consequence. A medic is trained to analyse a scene and act based
upon reasoning and pattern recognition[5]. However, this requires a lot of
practical training and evaluation to perfect, given the ramifications of being
undertrained.

If by applying machine learning methods to eye tracking data gathered
on qualified medical staff, a statistical model could be trained to detect ex-
pertise in a subject, then not only would insight be gained into what defines
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experts from non-experts, but a cheaper, more controllable method of assess-
ing trainees could also be implemented using the model.

This project assesses the viability of using machine learning on eye track-
ing data for classification of various staff members at Heath Campus, Cardiff
University as either an Expert Anaesthetist, or a non-expert, sometimes
termed Layman in this project.

The data used for these experiments was collected as part of a previous
two month research project carried out by a Cardiff student Ameen Ul-Haq
during which various members of staff, with varying expertise in the field of
Anaesthetics, were asked to identify mistakes in a set of 14 videos each lasting
approximately 15 seconds.With each video depicting common Anaesthetics
scenarios whilst being tracked by a Tobii eye tracking camera mounted to the
screen. This data has been properly prepared as part of a similar, following
project carried out by the author.

1.2 Project aims

This solution involved some subgoals as follows:

• Gaze Data Clustering - Plotting all the gaze data from each member
of either group for a clip, over the corresponding scene for that clip,
and sorting each point into a cluster of close-by points. Based on how
well a group’s gaze data for a scene clusters well, we can infer certain
attributes of common behaviour in that group. 3.3.2

• Feature Extraction - By taking measures that mathematically repre-
sent such attributes of viewing behaviour, we can search for distinction
between groups.3.4

• Dimensionality Reduction - For a complete model, it is necessary to
obtain a large amount of features, this however will increase the com-
plexity of the classification model. To combat this, the feature data
can be dimensionally reduced using standard methods. 3.5

• Classification - A statistical model can be fitted to the feature data in
order to find separation between experts and non-experts using machine
learning techniques.3.6
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1.3 Project Structure

In the following chapters, this report will document the methods used to
find the optimal solution to this problem. Chapter 2 describes the techni-
cal knowledge outside of regular Computer Science and scientific practice,
necessary to implementing this solution. Chapters 3 & 4 document the ap-
proach taken to solving the problem and the implementation of the methods
in approach respectively. Chapter 5 describes the experimental results gained
from chapter 3. Chapters 6 and 7 evaluate these results and illustrate their
reproducibility and significance in future works.
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Chapter 2

Background

This chapter provides some background into the various methods and tech-
niques used for the solution, as well as some insight into the domain of eye
tracking. Knowledge of which was fundamental to the success of the project,
and as a result featured heavily.

2.1 The science of eye tracking

Eye tracking is a scientific method of recording the movement of a subjects
pupils as their gaze moves over a scene or interface. This provides insight
into how the subject views the scene. For instance, what their gaze falls
upon first, how quickly they cover the majority of the scene, whether they
look over it more than once etc. Our eyes have four main types of movement,
with a distinct difference between each of them[6]:

The first movement, known as smooth pursuit movements, are slow
tracking movements of both eyes as it follows a moving stimulus.

The second movement, the saccade, is a short, ballistic movement of both
eyes that sharply changes the point of fixation. They can range in distance
travelled based on the scene being viewed, i.e. the difference between reading
a book and scanning a room.

The third and fourth movements, namely vergence shift and vestibulo-
ocular shift, align the eyes with stimuli of varying distances from the viewer,
and account for movements of the head respectively. For most controlled eye
tracking experiments, including those carried out as part of this report, the
viewer is asked to remain relatively still, normally in a seated position at a
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fixed distance from the stimuli, normally a computer screen. Therefore these
two types of movements do not feature as often in eye tracking analysis, and
not at all in this report.

Tobii screen mounted eye trackers use a method known as Pupil Centre
Corneal Reflection, or PCCR, to find the gaze point of the eyes. Near-infrared
light is shone into the pupils of the subjects eyes to produce a high definition
reflection in both the cornea and the pupil. The processor within the machine
then calculates a vector formed by the angle between the cornea and pupil
reflections, the vector’s direction is combined with other geometrical features
can then be used to calculate the gaze direction[7].

The format of the data collected from eye tracking used in this project
comes as a set of x and y coordinates for each frame that the camera was
recording, one pair for the left eye pupil, the right eye pupil, and a cen-
terpoint. These coordinates can then be scaled onto the display image to
provide a view of the subjects eyes moving over the image. This is then used
for analysis.

A large subset of features used in this project for classification revolve
around the behaviour of subjects as they fixate throughout the image. The
amount for instance, that an expert fixates during a viewing exercise will
reveal how quickly they scan the image.

2.2 Data Processing and Analysis

Before the data can be converted into features it is necessary to apply some
pre-processing and analysis. This will give a general direction in which to
take the search for features. For instance, by analysing the data in a spatial
and temporal context, it should become apparent from which angle, if not
both, feature extraction would be most successful.

In order to provide a thorough evaluation of the problem, in this project
a wide range of features will be extracted, with the intention of describing
the subjects viewing behaviour in as many manners as is feasible. This will
then result in a large dimensionality for feature space, which will need to
be reduced before feeding to the model for the computation requirements to
remain reasonable[8].

While many models are available for classification, and many of these
would be applicable to this data set, Support Vector Machines are the most
powerful. By applying Support Vector Machines to the problem, a non-linear
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separation between the groups can be found via the kernel trick, in the case
that the data is not linearly-separable.

2.2.1 Clustering

One method of data visualisation used in this project is clustering of the gaze
data. Clustering the gaze data for the subject(s) against a backdrop of the
clip that the subjects are viewing should reveal any ’hot’ areas in the image
that were visited more often, and conversely, any areas that were looked at
sparsely or not at all [9].

Clustering allocates to the data space a number of points, known as clus-
ter centres, and, using a distance measure or similar technique between the
point and the cluster centre, calculates the most likely cluster to which each
point in the data set belongs. This point is then labelled as being a part of
that cluster[10].

2.2.2 Dimensionality Reduction

Dimensionality reduction is a data processing technique that maps an nth di-
mensional data set to a lower dimensionality via a series of transformations[11].

Classifying in a large dimensional feature space can be very computation-
ally intensive. Not only this but visualisation of the classification results is
practically impossible at any larger than 3 dimensions. It was apparent from
the beginning of the project that a large roster of features would be necessary
to best describe each subjects viewing behaviour. Therefore dimensionality
reduction is absolutely necessary as a means of preprocessing the feature data
before classification.

The two main dimensionality reduction methods used in this project are
t-SNE and PCA for data visualisation and PCA for better classification, see
3.5

2.2.3 Support Vector Machines

Supervised machine learning for classification has become incredibly popular
in the last two decades. Given a data set, particularly powerful statistical
models can be built that learn patterns and features from that data set[12].
These are then used to separate the observations into groups, or classes that
share particular features or follow differing patterns. Once the model is built,
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data external to the training set can be fed to the model in order to get an
output of the predicted class of the new data.

Classification works via a function that maps a vector of features for
an observation to one of two (or more[13]) labels. The machine learns the
optimal function for each dataset by updating the weights, a set of parameters
applied to each feature value in the vector, such that a more accurate result
is given.

A powerful machine learning model, known as a Support Vector Machine,
or SVM, works by finding a hyperplane that best intersects multidimensional
data into two separate subsets, providing a margin to which any new data
can be compared, allowing for classification into either of two groups[14].
It does this by performing what’s known as the kernel trick, which uses a
user-chosen function to map the low dimensional data to a higher dimension
via a series of complex transformations, with the intention that a hyperplane
between the two groups becomes apparent in the higher dimensionality. Sup-
port vector machines were originally conceptualised in 1963 by Vladimir N.
Vapnik and Alexey Ya. Chervonenkis, but the model has gone through some
revisions since, with the standard Soft-margin SVM being published in 1995
by Vapnik and Corinna Cortes[15]. SVMs are useful because given a good
set of variables, or features, from an experiment an accurate classification
model can be built. The main drawback of SVMs is that due to the series
of transformations, it is difficult to interpret, making SVMs a black-box of
sorts.

For this project, Support Vector Machines are used to find a hyperplane
between the expert and non-expert group in nth dimensional feature space.

2.3 Previous Work

The data collection from the previous research project was based around a
supervised eye tracking experiment in which a mixture of Expert and non-
Expert Anaesthetists were asked to view a sequence of videos[16]. These
videos each depicted a scenario common to the practise, viewing an ECG
screen, a surgical equipment tray etc., with a noticeable medical error in
each. The subjects were prompted at the beginning of the exercise to look
for these errors. These videos were compiled into a video exercise lasting
approximately 5 minutes 30 seconds. The goal of the exercise was to elicit
responses in experts and non-experts that differed from each other. The
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Figure 2.1: A surgical equipment tray, with spillage under the needle

different responses would be represented in the subjects gaze data recorded
by the Tobii eye tracking machine while the exercise is carried out.

During the project previously carried out by the author, the gaze data
was preprocessed, filtering out variables that did not seem relevant to this
problem, these were measurements taken by the Tobii camera and didn’t
serve a purpose for observing the subjects gaze. The resolution of the gaze
data was also scaled to fit the background image for visualisation.
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Chapter 3

Approach

The solution for this problem documented in this report focuses on feature
extraction from the Tobii gaze data files. These features are then reduced in
dimensionality into a linear combination that helped visualise any distinction
between the two groups. The lower dimensional data is supplied to a SVM
model that uses cross-validation to fit a margin of optimal separation to the
feature-transformed data between experts and non-experts.

3.1 Quality of the data, and it’s effect on re-

sults

As stated above2.3 during the project in which the data was gathered, 15
subjects were recorded as they sat through the exercise. This is much smaller
than generally accepted in machine learning, with the smallest number of
samples expected to be in the 100s [17]. The lack of observed examples
for either class might negatively effect the results of classification, as the
outline of the space inhabited by either class in feature space will very likely
not be defined well. This can be tackled by implementing oversampling,
interpolating the data in order to get estimations of similar of observations
at random[18].

It must also be accounted for that the imagery used in the exercises may
not be effective in eliciting different responses in experts and non-experts. In
this case the features extracted and the classification model applied to the
data will be unsuccessful for the most part no matter what method used, as
the data itself has been recorded in a situation where the experts are not
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supposedly viewing the scene in a manner different to the non-experts.

3.2 Data Preprocessing

Gaze data files as recorded from the Tobii eye machine come in a particu-
lar format. The machine provides a large amount of information, most of
which was not used in this project. The Tobii camera gives readings for the
following:

• Timestamp

• Number

• GazepointX (L)

• GazepointY (L)

• CamX (L)

• CamY (L)

• Distance (L)

• Pupil (L)

• Validity (L)

• GazepointX (R)

• GazepointY (R)

• CamX (R)

• CamY (R)

• Distance (R)

• Pupil (R)

• Validity (R)

Of these, only Gazepoints L and R, Timestamp and Number were used
for the purposes of this project. Timestamp and number act as indices for
the gaze point, timestamp gives the time in milliseconds at which the frame
recorded, and number is the number of the frame in the entire set collected for
the exercise. Gazepoints L and R are both x and y coordinate pairs denoting
the eye tracking cameras estimated position of the gaze on the screen. By
taking the centre-point of both the x and y values, the subjects point of focus
can be estimated for that frame. As a result the data was preprocessed, by
filtering out these unnecessary measurements, before even clustering took
place in order to make the information more readable for debugging. This
results in a conversion from a table of 16 measurements to a set of x and y
value pairs.

The exercise originally contains all videos in sequence as one long video.
By counting the frame index at which each clip starts within the video.
These were then converted to the starting time in seconds. All timestamps
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are then collected into an array which is used to filter out the subset of
coordinates that is relevant to the current clip. Finally, the resolution the
data was recorded in by the Tobii camera is 1280x1024, whereas the first 6
clips showing images are 1280x720, and the last 8 showing videos of ECGs are
720x368. Therefore, before overlaying the gazepoints, in the tracking overlay
or during clustering, the gaze data must be scaled down appropriately.

Finally, the framerate of each video has been upsampled to fit the fram-
erate of the Tobii machine, the gaze data is not affected therefore no infor-
mation is lost. The only function of this is for data visualisation.

3.3 Exploratory Data Analysis

3.3.1 Eye tracking overlay

Figure 3.1: The first clip from the video, with the left (red), right (blue) and
centre(black) gaze points of an expert

It seemed best to visualise the data first, in the hopes that a difference
in the subjects’ viewing habits would be made plain. By overlaying the gaze
data per frame of the eye tracking file on the corresponding frame of the
video 3.3.1, it was possible to follow the subjects gaze and by comparing and
contrasting subjects for different clips, any difference in viewing behaviour
should become plain.

This view of the data was important as early on, it was intended for a
Hidden Markov Model (HMM)[19] to be fitted to each clip so that given a
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model for the clip it would be possible to separate any outliers, subjects who
didn’t behave as expected by the model, into a separate class from those
who did. This did not prove viable as from the videos it was clear that while
experts may spend the same time in certain areas of the screen, they did not
visit each area in the same sequence, a characteristic necessary to HMMs.

3.3.2 Gaze Data Clustering

Figure 3.2: Here the eye tracking data for all experts as they viewed the 3rd

clip is clustered using GMMs

A second approach was to cluster the gaze data of one group together
over all the clip on to a freeze frame of the clip. Since the first 6 clips within
the exercise video were scenes displayed in static images, the background
was not temporally significant, and subjects from the same group could be
compared together in order to create a heat map of sorts. For clustering,
the k-means clustering algorithm was originally used. However, the clusters
would often overlap or envelop smaller clusters entirely. k-Means clustering
works by fitting the n observations into k sets S = {S1, S2, ..., Sk}, then
minimising the variance per set[20].

The relatively poor clustering can be attributed to the k-means algo-
rithm, due to its unsuitability for this data, as clusters in the gaze data are
rarely circular. A different technique of clustering using a Gaussian Mixture
model was much more suited as, rather than a hard border being fitted to
each cluster, it instead fits a Gaussian blob[21]. The implementation first fits
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cluster centres using the k-means algorithm, but then assigns data to Gaus-
sians centred around these points. By measuring the posterior probability of
a gaze point belonging to each of the Gaussians in the model, a membership
to that Gaussian could be assigned to that point. This accounts for points
that are on the margin of two clusters for example.

A GMM was then fitted to a groups data for each clip, resulting in 28
models. One requirement of clustering is to provide the number of centres
to be fitted to the data. This could quite easily make the difference between
good and bad clustering as assigning an incorrect number of centres could
lead to two clusters being misidentified as one, or one Gaussian enveloping
all other data and containing any points too far from other centres to be
considered as part of them, for example. However, rather than specify the
number of centres based on how many clusters could be identified individually
in each of 28 images, it was easier to implement a heuristic using the elbow
method[22] by incrementally increasing the number of centres, measuring
the percentage of variance explained and defining a cut-off point where the
gradient suddenly decreases (giving the appearance of an elbow in the graph.
Percentage of variance explained is defined as the ratio of between-cluster
variance to overall variance.

One significant drawback with this approach to the data visualisation
however, was that 7 of the 14 clips were video clips, featuring temporally
dynamic stimuli, in the form of waveforms on an ECG. As the point of focus
would likely move with the stimuli, removing the temporal aspect from the
data would result in clusters that spanned the length of the waveform section
on the screen, giving little insight into focus in a spatial respect around the
crest of the wave.
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Figure 3.3: Poor clustering in the clip 7 due to objects moving along the
screen

3.4 Feature Extraction

Classification on the raw gaze data alone is implausible. This is because
both groups would visit the same areas in the image, quite possibly at the
same time, as all stimuli in the image do not require any expertise to notice.
Rather, it is in understanding them the distinction between groups would
lie. Practically this means on a two dimensional space (the eye tracking
data) both groups would be indiscriminable, making the task of finding a
hyperplane between them meaningless. However, so long as behaviour of
subjects sharing a group is similar, and as a whole different from subjects
in the other group, feature extraction should provide significantly separable
groups of subjects, matching their class.

Also while an experts activity over the whole clip might not be meaningful
enough for classification, how their activity changes over the duration of the
clip could prove significant. For instance, given an experts likely familiarity
with the scenes displayed in the exercise, it is logical to assume that they
are able to process the apparent information faster, and they might quickly
scan the clip and then rest for the remainder of the clip. For this reason each
feature was measured 15 times over each clip, once per second.
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3.4.1 Definition of a fixation

Many of the features defined in this project are statistics concerning the
subjects behaviour while fixating. The definition of a fixation used for this
purpose follows an algorithm that filters out fixation points based on a set
of criteria, if their velocity is lower than a cut-off velocity and if they are
surrounded by other gaze points that pass the first condition as well. This
algorithm is better defined in a paper on user attention[23]:

1. Calculate point-to-point velocity for each sample:

2. Label each sample below 25◦s−1 as belonging to a potential fixation
period, otherwise as to a saccade period.

3. Merge consecutive potential fixation period samples into a fixation
group, removing saccade samples. The length of these groups, or in
other words the fixation duration, must be higher than

100ms

. Under this threshold, the samples belonging to either a saccade or
short fixation group, are discarded;

4. Compute the spatial coordinates of each visual fixation (as the gravity
centre of the coordinates of the samples in the considered group).

This algorithm was nicely translatable into the projects application, with a
few approximations. Firstly, to measure 100ms, it was necessary to calculate
the framerate of the Tobii camera, and then the number of frames recorded
by the camera in 100ms. The framerate can be calculated using the total
number of frames of eye tracking data NF for one subjects exercise, divided
by the time elapsed in seconds during the exercise, T .

NF

T
=

16073

320.362s
≈ 50s−1

At 50fps, 5 frames will transpire in 100ms. The algorithm was modified
to include this, i.e. a group of potential fixations must last longer than 5
frames.

The second step was to calculate movements under 25◦/s. Using trigonom-
etry to calculate the number of pixels per degree, made this a matter of con-
version. The physical size of a pixel depends on what’s known as the Dots
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per inch, or DPI of a screen. Monitors fall into categories for DPI, which
are easily available online 1. Estimating the size of the monitor used, and
with knowledge that it was standard issue IT equipment for hospital staff,
it seemed reasonable to settle on 72DPI, a figure confirmed by medical su-
pervisor Dr. Lim. By making approximations of the distance the viewer sat
from the screen, and assuming a sitting distance of 45cm, or 17.71654in the
distance travelled by the gaze in pixels as a result of turning the eye 25◦ is:

dpx = |17.71654tan(25)

72
| ≈ 170.32px

Therefore, 1◦ = 170.32
25
≈ 7px.

For features that used the cluster of the gaze point, it was also necessary
in the algorithm for a fixation to remain in the same cluster for it’s duration.

3.4.2 Assigning clusters

When assigning each data point to a cluster, the expert model was used for
each clip. The expert clustered much more nicely, and better defined the
objects in the scene. This also suited a larger decision made whilst designing
the classifier 3.6.

Figure 3.4: A side-by-side comparison of the clustering of expert (right) and
lay (left) data shows that expert clusters span much more of the screen and
demarcate well defined regions within the scene, whereas lays only cover one
half of the screen

1https://snapshop.cam/dpi/
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3.4.3 Spatial features

Spatial features are measures of how the subject moves around the screen, for
example the distance travelled in the exercise by the gaze around the screen.

Experts seemed to demonstrate a much more steadier focus while fixating
as opposed to lays who exhibited more erratic movement. Therefore, the
mean variance within a cluster for each second long section of the clip is
used. This was measured along both x and y axes.

The frequency at which the experts would flick between different areas
in the scene also appeared to be higher than that of the lays, who would
meander through a path across the screen. Such behaviour would manifest
itself as a huge difference in distance travelled, defining a second spatial
feature.

Another hypothesis that experts might accelerate more rapidly towards
each cluster, as they recognised and honed in on the stimuli at the center of
that cluster is also tested.

As another feature, the total number of transitions made from one cluster
to another is used, to which the observation of lays flicking between regions
frequently lends confidence to.

In summary, five spatial features were measured 15 times over a 15 second
duration:

• Average in-cluster variance in the x direction.

• Average in-cluster variance in the y direction.

• Total distance travelled by gaze.

• Average acceleration towards a cluster.

• Total transitions from one cluster to a different cluster.

3.4.4 Temporal Features

Temporal features would describe how the subjects spend their time during
the exercise, i.e. how long they focus on any particular thing, or how often
they focus.

24



Cluster Features

Following the same logic used for Spatial features, it would stand that Ex-
perts would spend less time focusing on any area as they should recognise
errors quickly from experience and training. This was translated to average
duration spent in one cluster. However, as some of the clusters are quite
large, with some covering around 30-40% of the screen, it is possible that
the gaze could remain in one cluster for an extended period of time without
fixating for the most of that time. So the total number of fixations in a
cluster was taken as an additional measure.

Non-Cluster Features

In order to account for unsuccessful clustering, as in the ECG clips, and
behaviour that might not remain within a cluster, or where the cluster is not
significant, it was also important to take a selection of temporal features that
do not consider the cluster data, rather just measuring features from the raw
gaze data.

Time taken before the subject fixates at the very beginning of the clip
was used to measure how quickly experts find and focuses on an object in
the scene.

The total number of fixations and the average duration of a fixation per
section also seemed promising, based on the observation that Experts seem
to hone in on objects and remain for longer, i.e. fixating less frequently and
for longer. Similar to these features, is the time spent not fixating, with
the hypothesis that Lays would spend more time scanning rapidly across the
scene.

In summary five suitable temporal features were found, again measured 15
times during the clip, excluding time to initial fixation, which was measured
only once:

• Cluster features

– Total number of in-cluster fixations.

• Non-cluster features

– Time until initial fixation.

– Total number of fixations.
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– Average duration of a fixation.

– Time spent not fixating.
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3.5 Dimensionality Reduction

With 10 total potential features, with each feature measured and recorded
15 times per clip, classification would be in 150th-dimensional space. This
would then be increased by the SVM as the purpose of the kernel trick is to
increase dimensionality of the data to find hidden separation (explained in
2.2.3).

Therefore, although compiling a large number of features would increase
the likelihood of finding a distinguishing relationship between the groups, it
also increases the complexity of training and testing the resulting classifica-
tion model. When implementing dimensionality reduction, using the correct
method should reduce the complexity of the data with minimal loss of infor-
mation. Two popular methods, t-SNE and PCA, have been chosen for data
visualisation and analysis, and classification respectively.

3.5.1 t-SNE

t-distributed Stochastic neighbour embedding is a non-linear dimensionality
reduction method[24]. In two stages, it fits a probability distribution to pairs
of points in the high dimensional data such that similar points have a high
probability, and that conversely dissimilar points have very low probability.
A p.d. is then defined with lower (2nd or 3rd) dimensionality. The divergence
of these p.d.s is then reduced such that similar points in the high dimen-
sional data have mappings with similar probability in the lower dimensional
representation. This method is particularly useful for data visualisation, as
relationships between data are preserved in a visualisable dimension. How-
ever information isn’t technically retained, as the probability distribution of
similarity between points does not account for magnitude for instance. t-
SNE can be performed using a variety of distance metrics, of which Cosine,
Euclidean and Chebychev distance were used, for comparison. A fourth mea-
sure, Mahalanobis distance was not possible with this data as it requires that
the covariance of the data be symmetric.

The Cosine distance is defined as 1− cos(θ) where cos(θ) is the cosine of
the included angle between observations (treated as vectors).

Chebychev or chessboard distance is the maximum coordinate difference
between points.

Euclidean distance is described below.
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Cosine Distance:

dc(a, b) = 1− cos(θ) = 1− A ·B
‖A‖‖B‖

= 1−

n∑
i=1

AiBi√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

Euclidean Distance:

de(a, b) = de(b, a) =

√√√√ n∑
i=1

(bi − ai)2

Chebychev Distance:

dch(a, b) = lim
k→∞

( n∑
i=1

|pi − qi|k
) 1

k

Figure 3.5: The mathematical formulas associated with the 3 distance mea-
sures used by t-SNE in this project

3.5.2 PCA

Principal Component Analysis is a linear dimensionality reduction method,
for data with multiple correlating dependent variables. In short, PCA trans-
forms the data onto a new coordinate system that emphasises patterns and
variance in the data[25]. It does this by projecting the data onto the new
coordinate system such that the most variance in the data is on the first axis,
the next most on the second and so on.

Intuitively, in a coordinate system where variance in the data is at it’s
greatest, finding separation between subsets of the data will be at it’s easiest.
It is for this reason that PCA lends very strongly to classification methods
that separate the data, notably SVMs. As each of the new coordinates,
or principal components, is a linear combination of the original axes, the
dimensionality of the data is also reduced.

As the principal components are sorted in order of decreasing variance,
by definition, selecting the first n principal components such that these ac-
count for more than say 90% variance, means that any additional principal
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components can be discarded with only 10% variance lost. This cut-off can
be tweaked as appropriate, or can suit the number of desired dimensions.

However, data that is evenly spread, for instance circular, will result in
relatively even distribution of variance between principal components result-
ing. In this scenario the resulting loss in variance would be significant enough
for dimensionality reduction to be much less feasible. One other possible rea-
son for evenly distributed variance is the clustering of the data into two or
more sub groups, each with variance in different dimensions. By splitting
the data using a GMM and measuring the explained variability of each PC
in each Gaussian it can be determined if this is the case. If the variability in
both Gaussians is heavily biased to the first PC then this possibility is likely
true.

Two matrices are conventionally outputted as a result of the PCA algo-
rithm, the first, a set of coefficients or loadings, containing rows of coefficients
for each column relating to a principal component. The loadings allow by
matrix multiplication the conversion of data from the original feature space
into principal component space. The second matrix is the converted data
used to find the components.

In this project, PCA proved very effective not only for visualising relation-
ships between data in a lower dimensionality, but also effectively providing
a linear combination of the most distinguishing variables of data, along with
a relatively simple means of converting any new data into this format.

For classification, the process is similar, with each principal component
taking the place of a variable. In the event that the principal components
are split into two Gaussians, then a model is built for both subsets of the
data, and the result is taken to be the average loss over both models.

3.6 Classification

Classification is the main objective of this project. There are various ap-
proaches that can be taken to classification in order to fully assess the plau-
sibility of classifying expert and non-expert. Given 150 variables, it is simple
to implement single variable classification as well as evaluate pairs of vari-
ables for classification. If the lack of observations, i.e. subjects, appears to
affect the results too negatively, an oversampling approach can be applied
to the data such that each observation is surrounded in feature space by a
number of similar pseudo-random observations, interpolating the data but
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maintaining most information, as the points that are generated will be close
to the originally measured points. Doing so will better define the space in-
habited by both groups, in the hope that the model is misclassifying by a very
small margin, in which case it will then misclassify half of the observations
in that cluster rather than 100%.

3.6.1 Single-variable and pairwise classification

Classifying using a single variable is a simple method for assessing that vari-
ables usefulness in the model. Since the dimensionality is as low as it can
be and no preprocessing need occur before classification, it is prudent to test
each variable. Secondly, by creating a heat-map of variables classified in
pairs, weak and strong areas in classification could be visualised.

3.6.2 Sequential Forward Selection

A popular search method in feature space known as sequential forward se-
lection is a useful heuristic for building an effective classification model. Se-
quential forward selection adds features from the feature space sequentially
until the loss, which can be user defined, increases. The main drawback of
this technique is that if poor features are ordered first, these will be added,
increasing the loss, and therefore ending the process before better features
can be added[26]. Sequential forward selection becomes considerably more
practical a method once the variables are sorted in order of descending accu-
racy, effectively allowing SFS to create a partition of useful and non-useful
variables, where usefulness is determined by contribution to the classifica-
tion models accuracy. A counterpart of SFS is sequential backward selection,
which begins with a model including all variables, and incrementally removes
them until the accuracy decreases.

3.6.3 Classification in Principal Component space

As previously explained PCA is very useful for maximising the variance in
the data. It is as a result of PCA that the potential separation between
experts and non-experts in feature space is most defined, this should make
the SVMs job considerably easier if in the original feature space separation
is very slight.
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3.6.4 Configuring hyperparameters

There are many hyperparameters in a SVM model that can be tweaked to
better fit the scenario. The strongest and most apparent example being
the kernel function used to transform the data into a higher dimensional
space. There are three built-in functions available, namely linear, Gaussian
or radial basis function and polynomial kernels. Each function is suited to
a different application. For instance, the Gaussian kernel is default for one-
class learning [27]. The polynomial kernel is used in cases where data is not
linearly separable in feature space but requires the order of polynomial used
to be provided.

The box constraint for the model also requires tuning. The box constraint
is a measure of penalty on the model that encourages more separation by
increasing the cost of misclassified observations in the training data. By
increasing this value the model will be trained with stricter separation.
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Chapter 4

Implementation

This chapter documents the resources, libraries and implementation used to
achieve the methods listed in approach.

4.1 Environment

This project’s scope is with analysing and classifying previously collected
data, and as such, no further data collection was required. The data that
has been used has already been cleared for ethical approval, and therefore
this is not a concern for this project. The Software Implementation was
developed and tested on a 2016 MacBook Pro with a 2.3 Ghz Intel i5 Core
and 8 GB of memory, running MATLAB 2016b.

4.1.1 MATLAB

Matlab is a programming language tuned towards mathematical and scien-
tific programs developed by Mathworks. With heavy focus on mathematical
formula and data visualisation it is a very popular tool for data scientists
and analysts[28]. The development environment provides an intuitive means
of debugging code. Matlab provides a variety of licensed toolboxes for addi-
tional functionality such as Machine Learning and Image Processing. As a
result, the Matlab community has a heavy focus on scientists and academics,
providing a lot of support in the scope that this project falls in. This all
makes Matlab an excellent choice for this project as with the aforementioned
Machine Learning Toolbox, along with various other external toolboxes and
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libraries provided by the community, the main goal of the project could be
focused on with very little distraction in terms of ancillary functionality that
would otherwise reduce the time available to carry out the necessary experi-
ments documented in 3.

4.2 Toolboxes and Libraries

Many algorithms and methods necessary to the project approach have al-
ready been implemented, either officially by Mathworks or by the Matlab
community. Implementations of clustering methods and dimensionality re-
duction for instance are outsourced in this project to available toolboxes.

4.2.1 Statistics and Machine Learning Toolbox

This official Matlab toolbox was essential for this projects success. Providing
not only highly customisable methods for classification, but also clustering,
data partitioning and dimensionality reduction.

Clustering

The function used for kmeans clustering can be found in this toolbox. The
kmeans function takes as it’s mandatory arguments the data in a matrix x
of n observations of p variables, and k, the number of partitions into which
x is split by the algorithm. As the clustering method was later changed to
GMMs 3.3.2 the k-means method is not used in the final implementation of
the solution.

Dimensionality Reduction

Implementations of both t-SNE and PCA are both available through the
Stats and ML toolbox. The pca function takes a matrix x of n observations
of p variables, and outputs 3 notable values. The loadings matrix coeff, the
principal component scores in score, and latent, a vector of the explained
variability of each principal component.

As mentioned before in 3.5.1, t-SNE can be used for data visualisation.
The function tsne takes as its arguments, the matrix X, in the same format
as pca and kmeans. It can also take Name-Value pairs, including ’Distance’
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followed by ’mahalanobis’, ’cosine’, ’chebychev’ or ’euclidean’. Another no-
table optional parameter is ’NumDimensions’ which is by default 2, but can
also be 3 for 3 dimensional data representation.

Classification

The main and final goal of this project is successful classification of experts
and non-experts. The Stats and ML toolbox provides a ClassificationSVM
class, with methods for fitting, fitcsvm, and predicting, predict, a SVM
model. There are also methods for cross evaluation, crossval, and find-
ing the estimated loss of the model, kfoldLoss. Additionally, this toolbox
provides the implementation of SFS used in this solution.

4.2.2 NETLAB

The NETLAB toolbox provides various functionality for pattern recognition.
It was suggested for the project as a solution to the poor clustering provided
by the k-means algorithm as it contains an implementation of Gaussian Mix-
ture models for clustering data. The GMM code consists of several functions
(gmminit, gmmpost etc.) that allow the creation, initialisation, fitting and
EM training of a GMM. These were possibly the most used out of all methods
used for data preprocessing and analysis, being at least on par with the SVM
methods for use. In the NETLAB implementation, a GMM is created with
the function gmm, taking parameters for number of dimensions, number of
centres and type of covariance matrix. The model can then be initialised on
a data set using gmminit before finally being run through the Expectation
Maximisation, or EM algorithm to fit the model to the data.
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4.3 Algorithms

This section documents the implementation in Matlab of some of the algo-
rithms listed in 3.

4.3.1 Data Preprocessing

While this code was developed as part of the previous project in preprocessing
the gaze data, it is noteworthy as it scales and filters the gaze data from its
raw format.

Listing 4.1: This code filters out data for the specific clip, using an array
of timestamps, and the clip no. taken as an argument. It then scales the
resolution down depending on the clip.

1 % read in gaze data f o r sub j e c t
2 data = dlmread ( s t r c a t ( homepath , '/Working Di rec to ry /Data/' , group , i n t 2 s t r (

sub j e c t ) , 'videoGZD . txt ' ) , ' ' , 15 , 0) ;
3 % s e l e c t data r e l e van t to the c l i p
4 data = data ( data ( : , 1 )>(timestmps (1 , c l i pno ) *1000) , : ) ;
5 data = data ( data ( : , 1 )<(timestmps (2 , c l i pno ) *1000) , : ) ;
6 i f c l i pno > 6
7 data ( : , 3 ) = data ( : , 3 ) * 720/1280;
8 data ( : , 1 0 ) = data ( : , 1 0 ) * 720/1280;
9 data ( : , 4 ) = data ( : , 4 ) * 368/1024;

10 data ( : , 1 1 ) = data ( : , 1 1 ) * 368/1024;
11 e l s e
12 data ( : , 4 ) = data ( : , 4 ) * 720/1024;
13 data ( : , 1 1 ) = data ( : , 1 1 ) * 720/1024;
14 end
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4.3.2 Data Analysis

Overlay

In order to visualise the tracking data overlaid on the background clip, an
algorithm that would plot the data as points, on the same figure as the image,
for each frame was necessary. In order to better visualise the movement,
a line between the previous and current gaze points is plotted, giving the
appearance of gazepoints leaving a short trail as they move.

Listing 4.2: This code provided the initial data visualisation necessary to
disproving the feasibility of using HMMs 3.3

1 % f o r each frame in the video
2 whi l e hasFrame ( rdr )
3 vidframe = readFrame ( rdr ) ;
4 imshow( vidframe ) ;
5 hold on ;
6 % get the cor re spond ing frame in the eye t ra ck ing data
7 gzframe = data ( i , : ) ;
8 % f o r every frame a f t e r the f i r s t
9 i f s i z e ( prevframe , 1 ) > 0

10 % p lo t the t r a c e from the l a s t l e f t , r i g h t and cent r e gazepo in t s
11 % to the cur rent ones
12 p l o t ( [ prevframe (3 ) gzframe (3) ] , [ prevframe (4 ) gzframe (4 ) ] , 'b−' ) ;
13 p l o t ( [ prevframe (10) gzframe (10) ] , [ prevframe (11) gzframe (11) ] , 'r−

' ) ;
14 p l o t ( [ prev mn (1) mn pnt (1 ) ] , [ prev mn (2) mn pnt (2 ) ] , 'k−' ) ;
15 end
16 % p lo t the cur rent gazepo in t s on top o f the t r a c e to emphasise where
17 % the gaze i s t r a v e l l i n g
18 p l o t ( gzframe (3 ) , gzframe (4 ) , 'bx' ) ;
19 p l o t ( gzframe (10) , gzframe (11) , ' rx ' ) ;
20 mn pnt = mean ( [ gzframe (3 ) gzframe (4 ) ; gzframe (10) gzframe (11) ] , 1 ) ;
21 p l o t (mn pnt (1 ) ,mn pnt (2 ) , 'kx' , 'MarkerSize ' , 10) ;
22 % wr i t e the frame to the t ra ck ing video
23 writeVideo ( wrtr , get frame ( gc f ) ) ;
24 prevframe = gzframe ;
25 prev mn = mn pnt ;
26 i = i + 1
27 end
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Clustering

The final incarnation of the clustering algorithm used in this solution is a
combination of clustering using GMMs repeatedly, incrementing the number
of centres, until the rate of change of explained variance per cluster decreases
past a cut-off point, in what’s known as the elbow method. The implemen-
tation of which is featured below.

Listing 4.3: Here, the number of Gaussians is increased every iteration until
the error of the GM model increases by at least 1

1 i f ˜ e x i s t ( 'mix' , 'var ' ) ;
2 % c r ea t e mixture model , covar iance s e t to f u l l
3 mix = gmm(2 , num centres , 'diag ' ) ;
4
5 % se t opt ions s t r u c t to use f o r d i spExpert ing e r r o r at each cy c l e

l a t e r
6 mix = gmminit (mix ,X, opt ions ) ;
7 end
8
9 % i t e r a t e through EM algor i thm to improve f i t to data po in t s

10 f o r i = 1:2000
11 [ mix , opt ions ] = gmmem(mix , X, opt ions ) ;
12 end
13
14 i f num centres ˜= 1
15 i f opt ions (8 ) − e r r > 1
16 re turn ;
17 end
18 end
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4.3.3 Dimensionality Reduction

While t-SNE simply required plugging in via tsne, PCA although similar,
requires mention as in the case of the data clustering, an algorithm to split
the data into two Gaussians has been implemented.

Listing 4.4: The code repeatedly generates a Gaussian Mixture Model to fit
the data until one is successful, then the observations are allocated to one of
two centres based on posterior probability

1 whi l e ( t rue )
2 prinMix = gmm(num dim , 2 , 'diag ' ) ;
3 opt ions = f op t i on s ;
4 prinMix = gmminit ( prinMix , f u l l s c o r e , opt i ons ) ;
5 prinMix = gmmem( prinMix , f u l l s c o r e , opt ions ) ;
6 post = gmmpost ( prinMix , f u l l s c o r e ) ;
7 [ val , ind ] = max( post ') ;
8 % keep record o f what sub j e c t s are in e i t h e r Gaussian
9 s u b j e c t s i n 1 = [ ] ; s u b j e c t s i n 2 = [ ] ;

10 sc1 = [ ] ; sc2 = [ ] ;
11 f o r j = 1 :15
12 i f ind ( j ) == 1
13 sc1 = [ sc1 ; f u l l s c o r e ( j , : ) ] ;
14 s u b j e c t s i n 1 = [ s u b j e c t s i n 1 ; j ] ;
15 e l s e
16 sc2 = [ sc2 ; f u l l s c o r e ( j , : ) ] ;
17 s u b j e c t s i n 2 = [ s u b j e c t s i n 2 ; j ] ;
18 end
19 end
20 i f min ( s i z e ( sc1 , 1 ) , s i z e ( sc2 , 1 ) ) >= 5
21 break ;
22 end
23 end
24 % Find the exp la ined v a r i a b i l i t y o f the p r i n c i p a l components in each
25 % Gaussian
26 cov1 = cov ( sc1 ) ; cov2 = cov ( sc2 ) ;
27 e i g1 = so r t ( e i g ( cov1 ) , 'descend ' ) ; e i g2 = so r t ( e i g ( cov2 ) , 'descend ' ) ;
28 [ sc1 , energ1 ] = f i l t e r c omponen t s ( sc1 , e ig1 , 6 0 ) ;
29 [ sc2 , energ2 ] = f i l t e r c omponen t s ( sc2 , e ig2 , 6 0 ) ;

4.3.4 Classification

Classification on a single variable

By evaluating each variables independent performance, not only is that vari-
ables usefulness in the end model assessed, but this also aided the sequential
forward selection approach as variables could be sorted in descending order
of accuracy.
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Listing 4.5: Each variable, represented by a column of the data, is used to
fit a 1 dimensional SVM, which is then cross validated, and the loss for that
model estimated

1 % Sort f e a t u r e s based on t h e i r i nd i v i dua l c l a s s i f i c a t i o n accuracy
2 y = [ ones (8 , 1 ) ; z e r o s (7 , 1 ) −1];
3 fn = @(XT, yT , Xt , yt ) (sum( yt˜=( p r ed i c t ( f i t c svm (XT, yT) ,Xt) ) ) ) ;
4 acc = ze ro s (1 , s i z e (X, 2 ) ) ;
5
6 f o r i = 1 : s i z e (X, 2 )
7 f t = X( : , i ) ;
8 % I t e r a t e through the p a r t i t i o n ob j e c t s t e s t data and eva luate the
9 % f e a tu r e based on mean c l a s s i f i c a t i o n l o s s

10 ftmdl = f i t c svm ( f t , y , 'KernelFunction ' , 'polynomial ' , 'Kerne lSca le ' , '
auto ' , 'BoxConstraint ' , 0 . 0 1 ) ;

11 cvmdl = c r o s s v a l ( ftmdl , 'holdout ' , 0 . 3 ) ;
12 acc ( i ) = 1 − k fo ldLos s ( cvmdl ) ;
13 end
14 [ va l ind ] = max( acc )
15 cX = [ acc ;X ] ;
16 cX = so r t (cX , 2 , 'descend ' ) ;
17 cX = cX ( 2 : end , : ) ;

classification on features as a whole

Variable pair classification

Evaluating variables in pairs produces a heat map of classification that is very
useful for visualisation of the feature space for a clip. While computationally
intensive to fit and cross validate a model for each possible pair of variables,
the benefit the visualisation gives for evaluating a clip makes it a worthwhile
endeavour.

Listing 4.6: An n-by-n matrix is generated for n features. The use of nested
loops increases the complexity notably.

1 f o r i = 1 : n f t
2 f o r j = 1 : n f t
3 % Def ine accuracy as the percentage o f t e s t ob s e rva t i on s

m i s c l a s s i f i e d
4 mdl = f i t c svm ( [X( : , i ) X( : , j ) ] , y , 'KernelFunction ' , 'polynomial ' , '

Kerne lSca l e ' , 'auto ' , 'BoxConstraint ' , 0 . 0 1 ) ;
5 cvmdl = c r o s s v a l (mdl , 'holdout ' , 0 . 3 ) ;
6 acc ( i , j ) = 1 − k fo ldLos s ( cvmdl ) ;
7 end
8 end
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Sequential Forwards Selection

The SFS algorithm required the creation of a cross validation object and a
custom function that calculates a criterion value to be minimised.

Listing 4.7: The criterion function is passed to sequentialfs which gener-
ates multiple XT, Xt, yT and yt from the crossvalidation object c

1 %. t h i s f unc t i on c a l c u l a t e s the t o t a l m i s c l a s s i f i e d obs e rva t i on s from the
t e s t data by a model t r a in ed on the t r a i n i n g data

2 fn = @(XT, yT , Xt , yt ) (sum( yt˜=( p r ed i c t ( f i t c svm (XT, yT) ,Xt) ) ) ) ;
3
4 % Perform s equ en t i a l forward s e l e c t i o n on data
5 c = cvpa r t i t i o n (y , 'HoldOut' , 5 ) ;
6 maxdev = ch i2 inv ( . 9 5 , 1 ) ;
7 opt = s t a t s e t ( ' d i sp l ay ' , ' i t e r ' , ...
8 'TolFun' ,maxdev , ...
9 'TolTypeFun' , 'abs ' ) ;

10 inmodel = s e q u e n t i a l f s ( fn , cX , y , ' opt ions ' , opt , 'cv ' , c ) ;

Classification in PC space

The final method of classification is in PCA space. The implementation
shown also displays the method of oversampling data in the case that clas-
sification is poor. This precaution ensures that the space defined by experts
and non-experts, if distinct, is as well outlined as possible. This means that
if the hyperplane falls very slightly under one actual observation, the model
loses say 59% of the points in that cluster, rather than 100%.

Listing 4.8: Oversampling is achieved by randomly assigning a close by point
to one of the actual observations, 100 times over for both experts and non-
experts. This converts individual points into large clusters that should hope-
fully merge together

1 f o r i = 1 :92
2 % choose a random expert and lay obse rvat i on and generate a po int
3 % near to them
4 new exp ( i , : ) = mvnrnd( exp ( randi (8 ) , : ) , eye ( s i z e ( f u l l s c o r e , 2 ) ) ) ;
5 new lay ( i , : ) = mvnrnd( lay ( randi (7 ) , : ) , eye ( s i z e ( f u l l s c o r e , 2 ) ) ) ;
6 end
7
8 % t r a i n the svm model
9 svmmdl = f i t c svm ( f u l l s c o r e , l b l s , 'KernelFunction ' , 'polynomial ' , '

Kerne lSca l e ' , 'auto ' , 'BoxConstraint ' , 0 . 0 1 ) ;
10 % cros s−va l i d a t e the model
11 cvmdl = c r o s s v a l ( svmmdl ) ;
12 % obta in the est imated accuracy
13 acc = 1 − k fo ldLos s ( cvmdl ) ;
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Chapter 5

Results

Both the distinct behaviour of experts and non-experts observed in the over-
laid videos, and the clear difference between experts and non-experts in some
features extracted 3.4 promised good classification. While this was not true
in the original feature space, with some extra processing steps, using PCA
data, very high accuracy was obtained on average for all clips.
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5.1 Clustering

Figure 5.1: The clustering here is for Experts whilst viewing the 2nd clip.
The gaze data defines isolated areas in the image well.

Generally the data clustered well. Applying the GMM approach to the
gaze data resulted in an effective heat map for each clip based on an expert’s
gaze. Clusters overlapped very rarely and each cluster could consistently be
definitively assigned to a group of objects. The significance of the clustering
was less in the ECG clips, but altogether this provides a useful insight into
the popular areas in the scenes.
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5.2 Feature Extraction

All features were used in the resulting model excluding Acceleration to clus-
ter. This feature varied so distinctly between subjects in the same group
that it was excluded in the final model 5.2. All other features seemed to

Figure 5.2: A side-by-side comparison of two experts accelerations to clusters
demonstrates that the feature does not distinguish subjects as expert or non-
expert

demonstrate a pattern in subjects from different groups and were included
in the classification analysis 5.2. This leaves 121 features for classification in
the final models for clips 1-6 ((8 × 15) + 1), and 61 features for clips 7-14
((4× 15)− 1).

Figure 5.3: Total distance travelled for an average expert vs non-expert shows
that an experts gaze on average travels further than that of a non-expert
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5.3 Dimensionality Reduction

Figure 5.4: The only representation in which the groups are clearly separated
for clip 1 in 3 dimensions is Chebychev distance

The results of t-SNE were not very promising. Using all 3 possible dis-
tance measures separation did not appear to be a trait of this dataset. This
does not mean the data is inseparable, however the only distance measure to
translate the data into a lower dimensionality and retain a distinct border
between the two groups was Chebychev distance 5.3, although this was not
the case for all clips.

As stated in 3.5.2, when PCA results in particularly evenly distributed
variance between principal components, it is necessary to evaluate the ex-
plained variance of components split into a cluster. This proved true for
all clips. It has become apparent variables commonly divided the data into
two groups, such that both groups displayed variance in a different set of
variables. On average, the first two Principal Components in at least one of
two Gaussians for each clip, accounted for more than 70% of the variability
in that cluster 5.3, this being more than enough for ample dimensionality
reduction at the cost of very little loss in information.

44



Figure 5.5: For experts in clip 5, the explained variability of each principle
component after PCA (left) vs. the explained variability of either of two
Gaussians. The cut-off is generally set at 70%, making PCA effective only
after splitting the data.

5.4 Classification

The initial model used for classification in Single variable, Variable Pair and
PCA space, before configuring hyperparameters, was built using a 3rd order
polynomial kernel function and a box constraint of 0.01. See 3.6.4.

5.4.1 Single variable classification

Out of 121 total variables for clips 1-6, 12 variables on average, or 10%,
produced models with less than 0.5 loss. With the mean validation loss
being 0.8114. For a 2-class classification problem, random chance is 50%.
This can be considered quite a poor result, as it should be assumed that a
classifier can do at least as good as random chance. Of the 12 variables that
were better than random chance, 10 on average resulted in 70% accuracy
or better, a desirable accuracy for a classifier, 2 variables resulted in 100%
accuracy, or 0 loss. Given that each feature was measured 15 times over each
clip, no feature was adequately classifiable throughout the clip.

For clips 7-14, there are 61 variables used for classification. Out of these 5
variables produced a model with accuracy better than random chance, with
the mean loss being 0.8273. Only 3 variables succeeded at classifying better
than 70%, and most clips did not attain 100% at all. These are results very
poor.

As classifying on one variable is not sensible practically, and accounted
for in this project given the large roster of features taken, the poor results of
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this test are not final, and an acceptable model was still attainable.

5.4.2 Pairwise classification

Figure 5.6: The results for 2-variable classification is overall positive for clip 5
(left), with a large population of medium-dark blue (60-100% accuracy). Clip
10 (right) shows that many combinations result in approximately random
chance, but some obtain a better more acceptable result.

With 121 variables for image clip classification, and 61 for video clip
classification, the first 6 clips were notably more computationally complex to
generate heat maps for. As this test was mainly for visual evaluation of each
clips potential for classification the resulting high resolution of the heatmaps
made this slightly counterintuitive. However, from the figure it is clear that
a conclusion can still be drawn for a clip5.4.2.

Results for all image clips were very similar to clip 5, and likewise for
video clips to clip 10. The results of this test are slightly positive overall,
considerably better than single variable classification. From these figures the
feature space demonstrates the possibility for an effective model to be built,
but it is also the case that no feature, represented by a contiguous set of 15
spaces, performs well over the whole clip, illustrating a necessity to include
all features in order to avoid a reliance on any given segment of the clip for
classification.

5.4.3 Sequential forward selection

Sequential forward selection aims to sequentially add features from a feature
space until the accuracy of the resulting model decreases. Intuitively, this
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Table 5.1: The results show a relatively low accuracy on average.
Clip Sorted SFS Un-sorted SFS Sorted SBS

1 50.00% 50.00% 25%
2 50.00% 50.00% 50.00%
3 50.00% 50.00% 0.00%
4 50.00% 50.00% 25.00%
5 50.00% 50.00% 0.00%
6 50.00% 50.00% 50.00%
7 75.00% 50.00% 25.00%
8 50.00% 50.00% 25.00%
9 50.00% 50.00% 50.00%
10 50.00% 50.00% 50.00%
11 50.00% 50.00% 50.00%
12 50.00% 50.00% 50.00%
13 50.00% 50.00% 25.00%
14 50.00% 50.00% 50.00%

method cannot result in a lower accuracy than the lowest accuracy of the
features selected, but instead by combining features the aim is to improve
the accuracy of the model. It is unreasonable to expect a large improvement
on the results of the single or pair classification results, that being said, an
effective model is still possible from a combination of variables in some of
the easier clips to classify.

As mentioned in 3.6.2, in order to aid SFS, the features can be sorted in
descending order of single classification accuracy so that the best feature for
single classification is the first one evaluated by the algorithm and so on. The
results are as expected not exceptionally better than any one of the variables
for the clip. Surprisingly the results are for the vast majority 50% accuracy
5.1. This remains the same after being tested multiple times, which is even
more unlikely given that sequentialfs has some aspect of randomness in
the partition of data it chooses. It is also worth noting that SFS consistently
only selected one variable before ceasing it’s search, the same result was also
true for Sequential Backward Search which did not remove any variables.
This incredibly unexpected result calls into question the functionality of the
sequentialfs function. Nonetheless the model still stands to be improved
by PCA and tuning hyperparameters.
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5.4.4 Classification in PCA space

Table 5.2: Classification before and after oversampling shows that the num-
ber of observations was in fact too small to build a successful model.

Clip Original Classification Oversampled Classification
Clip 1 47.22% 87.00%
Clip 2 47.32% 85.00%
Clip 3 75.00% 78.50%
Clip 4 60.00% 82.50%
Clip 5 45.00% 89.50%
Clip 6 60.00% 75.00%
Clip 7 59.82% 88.00%
Clip 8 55.00% 91.00%
Clip 9 55.00% 85.50%
Clip 10 44.44% 85.00%
Clip 11 60.00% 91.00%
Clip 12 53.57% 87.00%
Clip 13 50.00% 86.50%
Clip 14 60.00% 89.00%

Avg. 55.17% 85.75%

PCA space will include all features transformed such that variance is
maximised. Given for all clips each PCA was split into Gaussians, the result
for each clip is the average loss over both models.

The results 5.2 were as expected given the poor performance in feature
space. The PCA provided some improvement on the features by stretching
out variability in them, but a massive improvement in results is not only
unlikely, but also unexpected. With average accuracy being approximately
55%, the demonstrated result is that the experts and non-experts recorded
for this experiment are not different enough for accurate classification.

However, as suggested in 3.1, this may be due to the lack of observa-
tions, as in 3.6 and later implemented in 3.6.3, oversampling the data results
in much better classification accuracy. With 200 samples the penalty for
missing 1 point from the original observations, which now falls at the centre
of a cluster of points will be approximately 3.33% rather than 6.67%. A
more acceptable sample space will also give the model a more defined re-
gion for both groups, even if those regions overlap. It can also be reasoned
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that as the points generated are very near to the original points, the model
trained will still be trained on expert-like and non-expert-like observations.
Effectively it is unlikely that oversampling the data will result in the model
being considerably rewarded for classifying observations that are not realistic
representations of either group.

5.4.5 Configuring SVM hyperparameters

The results collected after oversampling the data demonstrate an effective
model for classification. The model still stands to be improved however. By
changing the kernel function and box constraint as described in 3.6.4 the
model can be significantly improved.

Kernel function

As stated in the documentation for fitcsvm 4.2.1, the Gaussian kernel func-
tion is suited for one-class classification. In this scenario classification is
between the class and an ’outlier’ class. As in this problem we have two
distinct classes, tests were only performed on Linear and Polynomial kernel
functions. The polynomial kernel function requires that an order be specified.
For this data, 3rd, 4th and 5th order polynomials were evaluated. All results
are much better than the un-padded model, with the 3rd polynomial kernel
function having the best effect on the data by a small margin 5.3. Even the
worst performing model, 5th order polynomial, is more than acceptable for
most clips, with the exception being Clip 3 and Clip 4 in which the model
does very poorly.

Box Constraint

Given the exceedingly positive results from the 3rd order polynomial kernel
function, tests for different Box Constraints will all use this kernel function.
Training a model with a higher box constraint will result in less misclassi-
fication in the training set. As a result, classification on average should be
worse 5.4.
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Table 5.3: Accuracy is highest when using a 3rd order polynomial kernel
function

Clip Linear 3rd Order 4th Order 5th Order
1 75.00% 91.50% 85.50% 65.00%
2 87.00% 91.50% 92.50% 65.00%
3 87.50% 90.50% 87.50% 53.50%
4 81.00% 90.00% 73.00% 41.50%
5 91.50% 98.00% 97.50% 64.00%
6 78.00% 95.00% 77.00% 81.50%
7 88.00% 91.50% 87.00% 62.00%
8 69.00% 92.50% 94.50% 74.00%
9 67.00% 88.50% 87.50% 60.50%
10 73.00% 84.00% 79.50% 69.00%
11 62.50% 93.00% 91.50% 84.50%
12 67.50% 88.00% 86.50% 75.50%
13 64.50% 75.00% 78.00% 74.50%
14 63.50% 90.00% 88.00% 71.50%

Avg. 75.36% 89.93% 86.11% 67.29%

5.5 Results evaluation

In general, the subjects’ gaze clustered quite well into distinct areas within
the scene. Each cluster in any image could be associated with a correspond-
ing object or group of objects within the scene. Although clustering for the
non-experts was less defined and more blurry, the overall results of clustering
the data for image clips proved the method to be a reliable one for defin-
ing objects in the scene, and matching a subjects gaze with that object(s).
Video clips did suffer considerably in this approach as a large portion of the
screen featured moving objects, leading the subjects gaze along a large area,
resulting in poor clustering without the temporal information.

Feature extraction was also fruitful, with 10 identifiable features being
measured from the data, 9 of which were used in the classification model for
image clips. Increasing the dimensionality of the data initially, by measuring
the features multiple times over the image, aided greatly in solving the later
found problem of features being weak in certain sections of the clip. By
separating each feature into a set of features, one for each section, weak
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Table 5.4: Tuning the box constraint gives a small increase in classification
accuracy, with 0.001 averaging very slightly higher than 0.01

Clip Box Constraint
10-4 10-3 10-2 10-1 100 101 102

1 94.00% 93.00% 91.50% 91.00% 90.50% 90.50% 90.50%
2 94.00% 92.50% 91.50% 91.50% 91.50% 91.50% 91.50%
3 91.00% 92.00% 90.50% 87.00% 88.00% 86.50% 86.00%
4 89.50% 91.00% 90.00% 89.00% 88.50% 88.00% 88.50%
5 98.50% 98.00% 98.00% 98.00% 98.00% 98.00% 98.00%
6 92.00% 92.50% 95.00% 95.00% 95.00% 95.00% 95.00%
7 94.00% 95.50% 91.50% 90.50% 90.50% 90.50% 90.50%
8 93.50% 94.00% 92.50% 91.50% 91.50% 91.50% 91.50%
9 82.50% 84.50% 88.50% 90.00% 87.00% 85.50% 84.50%
10 76.00% 83.00% 84.00% 83.00% 81.50% 78.00% 73.50%
11 93.50% 96.00% 93.00% 93.00% 90.50% 90.50% 90.50%
12 84.00% 84.00% 88.00% 87.00% 85.50% 87.00% 86.00%
13 76.00% 76.00% 75.00% 74.50% 77.00% 78.00% 79.00%
14 85.50% 88.00% 90.00% 85.00% 85.50% 84.00% 84.00%

Avg. 88.86% 90.00% 89.93% 89.00% 88.61% 88.18% 87.79%

areas could then be filtered without ruling out the feature wholly, which
could still be useful towards, say, the beginning of the clip. As explained, the
video clips did not provide defined cluster data, and as a result features with
a focus on clustering were not used. This effectively ruled out 4 features for
use with video clips.

Dimensionality reduction is perhaps the least successful area of evalua-
tion for this data set. When visualised by t-SNE using 3 popular distance
measures, the data seemed inseparable in 2 of these different views, even
in 3 dimensions. Where t-SNE, a non-linear, very powerful dimensionality
reduction method which has been shown to be much more successful than
other methods [24], fails, it is very unlikely that PCA, a less complex method
might succeed.

The results of PCA show that dimensionality could not be effectively
reduced back down without losing a significant portion of the data’s variabil-
ity. It was through testing the hypothesis that the data might be split into
two clusters with variability in contrasting dimensions, that it was eventu-
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ally proven that this was the case. Once the principle component data were
split into Gaussians and measured, the following results were much more
favourable. Variability in either cluster was shown to be heavily skewed to
the first few principle components, allowing a lot of extra dimensionality to
be discarded. This method is easily reproducible on new data, given the coef-
ficients of the PCA, which would be used to transform the data from feature
space, and the original mixture model, which can sort data into either of two
clusters based on it’s explained variability.

Classification reflected the results of t-SNE, with the base model strug-
gling to consistently classify better than random chance on the majority of
variables. However, as explained in ??, this approach is not practical for a
final model given each variable only accounts for 1 measure during 1 second
of a 15 second clip. So these results were not absolute.

Combining variables into pairs and classifying was again mainly an en-
deavour in visualising the classification space, and the possibility of an ef-
fective model built on a larger number of features. The use of colour to
denote accuracy was very useful in defining regions of successful vs. unsuc-
cessful feature pairs. While the majority of features in the earlier clips, 1-6,
averaged at around 60%, there was no region spanning 15 or more spaces,
equal to a feature measured over the entirety of the clip, that kept above
this boundary. This means that no feature could be relied on to be effective
throughout the clip. Heat maps for video clips displayed a less successful
overall classification using feature pairs. Each heat map was heavily dotted
with light blue to white spaces, evidence of less than 50% accuracy.

The results of single and pair classification were ambiguous in their predic-
tion of the accuracy of a fuller model, built on a larger number of features.
With the feature space translating relatively poorly into principle compo-
nent space, and as a result the necessity to classify two subgroups of subjects
formed from the clusters, expected success of the model was low. Classifi-
cation on principle component scores was mixed, with some clips showing
60%+ accuracy, but most being on par with random chance, or worse even.
While splitting the scores into Gaussian clusters had allowed for a reasonable
amount of dimensionality reduction, the classification in either subgroup was
still quite poor.

The poor results of SFS, assuming the Matlab implementation did work
as intended, confirm that in feature space an effective model cannot be built
given the features collected. Instead PCA would have to be used in order
to maximise variability, in the hopes that this might give the model enough
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space to find an acceptable separation between the groups.
In a final attempt to obtain an acceptable model, the principle component

scores were oversampled. With approximately 180 extra observations to train
on, all forming clusters around the original observations, the model fared
much better. Accuracy was considerably improved after oversampling, such
that all clips were at least 80% in accuracy, with the exception of clip 6 which
was still more than acceptable.

Following the vast improvement from oversampling the final step was to
tweak hyperparameters in the hopes of slightly improving the accuracy for an
optimal result. Concerning the kernel function, 3rd order polynomial was by
a small margin the best function to use. This follows a lucky estimation that
lead to this kernel function being used prior to tuning, for the previous tests.
Realistically, 3rd order, 4th order or even linear kernel functions all produced
very high accuracies, with the only notably poor performance coming from
5th order polynomial. In terms of value used for the box constraint, most
values again produced similarly acceptable results. On average a value of
0.001 provided the best results at approximately 90%, however, the highest
record accuracy of any test was obtained using 0.0001, for clip 5 at 98.50%.
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Chapter 6

Conclusion

Overall, results for this project are very positive. The high classification
accuracy for oversampled principle component data, as a feasible result for
future use, is validated by previous tests. The reliability of the features
used, at least for image clips, is validated by the clear clustering seen using
GMMs 3.3.2. The decision to reduce the dimensionality of the data via PCA
is justified twofold: classification on any combination of original features
was very poor, sometimes worse than random chance. For this reason, in
tandem with the observation that no feature was consistently effective over
the whole clip, meant that a model in original feature space would be high in
dimensionality. Thus, the need for dimensionality reduction. Finally, given
that the assertions that classification on oversampled data are sound, the
model was vastly improved upon as a result of oversampling. This result
aids concerns that the test scenario might not be an effective one.

For reproducibility, a subject is recorded using any eye tracking camera,
at the distance specified in 3.4.1. The gaze data is then fitted to the clusters
in the Gaussian Mixture Model fitted to the expert data. The features spec-
ified in 3.4.3 and 3.4.4 are then measured for this subject. Using the PCA
coefficients for the clip, the measured data can be transformed into principle
component scores. The PC scores are then fitted into one of two clusters,
using the GMM trained on PC data for that clip. Finally, using either of
the two models with the Statistics and Machine Learning Tooblox’ matlab
predict function will result in the models prediction for this subject.
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6.1 Reflection on Learning

As a result of this project I have gained my first insight into Machine Learn-
ing. Machine learning has been an interest for me in some ways for longer
than Computer Science. Through trial and error with one of the more pow-
erful machine learning models, I have been able to learn the appropriate
training, validation and evaluation methods for different scenarios. I have
gained a comprehensive knowledge in Support Vector Machines, their in-
ner workings and the hyper parameters tailored to each specific scenario. I
have also become familiar with the field of eye tracking and the processing
that converts this into model trainable data. Equally as important is the
experience I have gained with professional research practice standards, on
proper experiment techniques and report construction and writing. I finish
this project feeling confident and informed for the research field, one that I
am very hopeful to contribute more to.
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Chapter 7

Future Work

While the project was an overall success, the results could be built upon in
many different ways. For instance, the final results, while positive, relied
heavily on oversampling of the data. The validity of these results has been
proven to be very likely, but testing on a much larger data set of real ob-
servations is necessary to concretely confirm the theory. Given a larger data
set, it would also be worthwhile evaluating the performance of other machine
learning models on the data set. To name one such model, Recurrent Neural
Networks using Long Short-Term Memory layers would make for an inter-
esting approach to the problem. With a heavy focus on hidden temporal
relations, LSTM RNNs could result in a generalised model for experts and
non-experts, across all clips, rather than a GMM for clustering, and for PC
data, and possibly two models for classification. This would be much more
implementable at the cost of interpretability.

The reproducibility of the models used in this project allow for implemen-
tation of software that uses such models for evaluation of medical personnel.
Perhaps in a training environment, trainees could be asked to carry out the
exercise, and their gaze data submitted to the model. If a trainee is following
the correct procedure, or at least has had ample experience with the scenarios
depicted in each clip, it follows that they should view the scene in a similar
manner to the experts used in this project to train the resulting models. One
such application of this, is in underdeveloped areas, where expensive medical
training and equipment, as well employment costs for medical professionals
to oversee training exercises, are not readily available. In the place of these
resources, trainee medical staff could be evaluated by these models, and with
some extension into explainability of these models, a membership function
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could produce as a result the degree to which that trainee fits the expert
model.

Possibly the most promising application of these results however, is the
extensibility of the conclusion. The scenario described in this problem, of an
expert analysing a scene, and the features taken, are not unique to anaes-
thetics. With some further testing in other non-medical fields, the same
hypothesis could be proven for experts as a whole, providing valuable insight
into the process by which someone gains expertise in a field, at least one in
which this person is required to analyse a scene.
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