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Abstract 
The application of machine learning and deep learning models in recent years has become 

ubiquitous across multiple data-intensive domains. From e-commerce product 

recommendation to object recognition in images, these models are becoming increasingly 

present in our day to day lives, but can their classification predictions truly be trusted? In 

this paper, we aim to compare two models used for text classification, a Naïve Bayes based 

approach and an LSTM based approach. We then seek explanations from these models 

using LIME [1] predictions to determine if their predictions are accurate. The project aims to 

provide a useful insight into the data for the user, allowing them to decide if they should 

place their trust in predictions given by the classification systems. Our results indicate that 

using a machine learning-based approach provides better metric performance results over a 

deep learning based implementation. However, it is the deep learning based approached 

which provides superior results when classifications are explained. 
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Introduction 
In recent years, there has been an exponentially increasing amount of generated and 

available data. It is predicted that in 2018, 30 zettabytes of data will be created, a tenfold 

increase since 2010 [2]. This increase of data creation has led to traditional methods of data 

analysis becoming ineffective due to increasing labour and computational costs. This has 

sparked commercial and academic interest in the use of data-hungry deep learning-based 

models (AI) to solve big data issues. Coupled with the widespread adoption of graphics 

processing unit(GPU) powered computing [3] [4], deep-learning based models have had 

great success in solving computational intensive real-world problems. However, as the 

popularity of deep learning models has grown, little has been done in tackling one of the 

leading issues surrounding deep learning. The issue of transparency.  

The motivation for this project comes from the lack of transparency of these deep learning 

systems. How do they come to their conclusions? And can we trust them? As the word deep 

suggests, these systems are formed by connecting multiple layers of neurons (which is what 

makes them deep) to create a network. As each layer can vary significantly in its size and 

function, numerous connected layers can often be complicated and difficult to understand 

without in-depth technical knowledge. This is referred to as the ‘black box’ problem of deep 

learning [1]. For a general user of a system, this can be an issue, as few classifiers are able to 

give reasoning to their classification. As more tasks become autotomonised, we, as users of 

these systems, are required to put more trust into them. But can we be confident that a 

system is making its decisions for the correct reasons?  An example of this increased 

requirement of trust in the use of autonomous vehicles [5].  

The core focus of the project is to develop and compare two text-based classification 

methods, which will classify social media data (tweets) into two categories and provide an 

explanation for classification into a category. The first is ‘of interest’ and the second is 

‘uninteresting’ in the context of Crime and Security to a data analyst. The first classifier will 

use a machine learning based implementation; the other will use a deep-learning based 

implementation. Both of which are further described in the research and method sections of 

this report.  

Supplementary to the need to improve transparency in deep learning systems, on 28th May 

2018, the European Union’s updated General Data Protection Regulation (GDPR) comes into 

force. One of the critical points of this regulation is Art. 15 - Right of access by the data 

subject. This states that “The data subject shall have the right to obtain from the controller 

confirmation as to whether or not personal data concerning him or her are being processed, 

and, where that is the case, access to the personal data and the following information:” [6]. 

This updated legislation now puts a legal obligation on companies which collect and use 

personal data to explain how and where an individual’s data is used. The need for greater 

transparency of deep learning-based systems is now not just a performance improvement 

but, is a financial incentive to companies who use them. As companies who operate within 

the European Union and do not comply with the updated GDPR can be subject to hefty 

fines.  
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Research 

Inspection of data: 
A tweet is of ‘interest’ to a crime and security analyst when it has been manually labelled as 

such. The interesting tweets within this dataset have been collected by human analysts who 

have manually deemed that the tweet contains useful information and should, therefore, be 

stored and analysed.  

The complete dataset for this project contains 20,772 individual labelled tweets. 973 of 

those are labelled as ‘interesting’ and 19,799 are labelled as ‘uninteresting’, giving a ratio of 

around 20:1. The timeline of the dataset starts on the 22nd March 2017 and concludes on 

the 3rd of July 2017. Figure 1 shows the count of tweets collected per day across the dataset. 

As we can see, there are four distinct spikes in the timeline that correspond to four events 

studied by the Cardiff University Crime and Research Centre.   

1. 22nd March 2017 - Westminster attack, London 

2. 23rd May 2017 – Manchester Arena attack, Manchester 

3. 3rd June 2017 – Champions League final, Cardiff   

4. 19th June 2017 – Finsbury Park attack, London 

'After weapons caches were stolen in several countries, the Saudi King (who sponsors 

terrorism) won't go to G20. Really makes you think... pic.twitter.com/4yuipQmabU' 

'RT @CNN: This message is greeting commuters at #FinsburyPark tube station as 

Londoners awake to another tragedyâ€¦ '  

 

 

Tweet 2. Interesting Tweet: Created on 03-Jul-17 @ 06:33:00 

Tweet 1.  Uninteresting Tweet: Created on 19-Jun-17 @ 11:21:31 

Figure 1.  Count of tweets over period of dataset. 
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Figure 2 describes the count per day of interesting labelled tweets. Comparing to Figure 1, 

we can see that the interesting dataset does not include any tweets from before May 2017. 

Therefore the interesting dataset is unlikely to contain any tweets related to the 

Westminster attack. Figure 2 also shows the occurrence of an outlier, with one single tweet 

occurring in July (Tweet sample 1), which is unrelated to any of the previous events. 

    

Figure 3. Count of tweets per 15 minutes on 3rd June 2017. 

Figure 2. Count of interesting tweets per day. 
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Under and overfitting a model 
During the training of a model, it is essential to be able to give the model sufficient data to 

train on. If there is insufficient training data, the model will not be able to learn the desired 

function of the data(underfitting), therefore, perform poorly. If a model is given too much 

data, it will learn the noise of the training data well, but when a test set is used, will perform 

poorly(overfitting). To prevent overfitting, a validation set can be of used in this scenario. 

Used during the training of a model, a validation set allows metrics to be computed which 

enable the model to adjust, reducing the chance for overfitting of the data.  

 

Machine Learning models 

To understand deep learning, one must first be familiar with the principles of machine 

learning, as deep learning is a sub-topic of machine learning. Machine learning is essentially 

the application of an algorithm that can learn from data.  An algorithm is said to learn from 

experience E with respect to some class of tasks T and performance measure P, if its 

performance at tasks in T, as measured by P, improves with experience E. [7] 

To determine which algorithm is most applicable to our dataset, we must decide what 

category our dataset belongs to.  Machine learning tasks are split into two main groups. 

Supervised learning (when the input data has in addition to itself, the output attribute that 

we want to predict or labelled data) and unsupervised learning (in which we only have the 

input data or unlabelled data). 

As this project contains labelled data, a supervised learning approach is suitable. We then 

subdivide this into two types of problem, a classification or a regression problem. A 

classification problem requires one out of two or more classes to be predicted. Regression 

problems do not require a single class output. Instead, regression problems expect a 

continuous variable to be predicted as output. Our dataset is then most suited to use a 

supervised classification algorithm, in particular, an algorithm that is suited for binary 

classification problem as we are only trying to predict two classes. 

Many algorithms can be used in this case; typical examples include support vector 

machines(SVM), decision trees and Naïve Bayes. However, for this project, we have chosen 

to implement the Naïve Bayes model as our machine learning algorithm. Even though it is 

not the highest scoring method for text classification (the Bayes method is thought to be a 

benchmark in machine learning, as its strengths come from the algorithm’ high efficiency. 

This allows for models to be designed, trained and tested quickly, as the algorithm only 

requires one pass over the training data to fit and test while delivering good results.  
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Naïve Bayes  

The Naïve Bayes is a method of probabilistic classification method based on Bayes’ 
Theorem. Bayes’ theorem describes the conditional probability of an event. Based on prior 
knowledge of conditions that might be related to the event. [8] 
A Naïve Bayes classifier assumes that the presence of a feature in a class is unrelated to the 
presence of another feature. Meaning all features associated with a class are treated 
independently to another when contributing to the probability that a data sample belongs 
to a specific class. This assumption is where the ‘naïve’ connotation of Bayes occurs, as the 
assumption is often incorrect. When probabilities are calculated, it is rare that a sample has 
a 100% probability of belonging to a single class. Therefore, the class with the highest 
probability is outputted as the predicted class of the sample.  
 
 

𝑃(𝑥 | 𝑦) =  
𝑃(𝑥) 𝑃(𝑦 | 𝑥)

𝑃(𝑦)
 

Multinomial Naïve Bayes 

This implementation is used for multinomially distributed data. In this model, features are 
treated as event probabilities so that a word can have a probability value in the range of 0 – 
1.  It is the most widely used implementation of Bayes as it has been shown to outperform 
other Bayes classifiers in the field of text classification. [9]  
 

𝜃𝑦𝑖 =  
𝑁𝑦𝑖 + 𝑎

𝑁𝑦 +  𝑎𝓃
 

 

Bernoulli Naïve Bayes 

This implementation is used for multivariate Bernoulli distributed data. Unlike Multinomial 
Naïve Bayes, features are treated as binary. It is either present with a value of 1, or it is 
absent, which gives a value of 0. This implementation only works on datasets with two 
classes (binary classification).  

 
𝑃(𝑥𝑖  |𝑦) = 𝑃(𝑖 | 𝑦)𝑥𝑖 + (1 − 𝑃(𝑖 | 𝑦))(1 −  𝑥𝑖) 

 
Parameter optimisation 

The multinomial Naïve Bayes method supports the use of Laplace smoothing.  Laplace 

smoothing is a method of smoothing categorical data. If tuned correctly the application of 

this can lead to an improved performance compared to the Bernoulli Naïve Bayes. 
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Deep learning-based models  
 

Why deep learning? 

When attempting to predict complex patterns, deep learning models are preferred over 

machine learning models due to their ability to learn complex non-linear functions. Unlike 

machine learning algorithms, neural networks have many complex additional functions that 

can be applied to adjust its predictions. Neural networks are typically trained by using 

iterative, gradient-based optimisers which require multiple passes over the training dataset 

to train. 

 

Primary flow of a neural network 

The most basic of deep learning models is that of a feedforward neural network or a 

multilayer perceptron (MLPs).  Their function is to map an input ‘x’ to an output category ‘y’. 

A layer is the definition of a function that is to be applied to data. As a layer can vary 

significantly in size and function, it is useful to categorise layers into three types; an input 

layer, a hidden layer(s) and an output layer (as shown in figure 3). The chaining of multiple 

layers defines a model.  

The input layer takes the input data and feeds it to the second layer of the network. The 

second layer then applies a function to the input data and passes it onto the 3rd layer. The 

3rd layer then applies another function and passes the input to the output layer.  The output 

layer then outputs a predicted value. The second and third layers are classed as hidden, as 

the input data only specifies the input dimension and output dimension of the network, not 

what should occur between these layers. In this example, our model has two hidden layers, 

but in theory, a network could have an infinite number of them. However, this can vary due 

to implementation. The network is feedforward if connections between layers do not form a 

cycle. 

As a network can comprise many layers, the overall number of layers gives us the depth of 

the model, which is where the term ‘deep learning’ arises, as more layers means a deeper 

model.  

 

 



11 
 

 

Figure 4. A diagram of a fully connected MLP1 [10] 

Training of a neural network 
Each layer of a network is comprised of at least one neuron. A neuron’s function is to sum 

all the data passed to it, multiply each input by a weight and then add a bias to that sum 

(equation below). The resulting calculation is then passed onto the next layer for further 

computation.  

𝑁 =  ∑(𝑖𝑛𝑝𝑢𝑡𝑠 ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠) + 𝑏𝑖𝑎𝑠 

 

A neural network is trained by using a loss function to determine the error between a 

model’s predictions and the targeted output of the training data. This value of error is then 

given to an optimiser, whose job is to adjust the weights of the neurons in such a way to 

minimise loss. The optimiser achieves this by using a method called back propagation, which 

‘sends back’ the value of loss to the previous layer, the optimizer then uses this value of loss 

to adjust the weights of the neurons.   

Activations functions 

An activation function is a used to apply either a linear or non-linear functional mapping 

between the output values from a neuron to a defined output range. The activation function 

is required as a neuron cannot control the size of the values it receives. Therefore, once it 

has completed its computation, the resulting (N) value can be infinitely large, making it 

potentially unsuitable for input into another layer. This is particularly the case of output 

layers, where the output value is required to be within a certain range. (i.e. 0 -1). 

                                                      
1 - https://github.com/ledell/sldm4-h2o/blob/master/sldm4-deeplearning-h2o.Rmd  

 

https://github.com/ledell/sldm4-h2o/blob/master/sldm4-deeplearning-h2o.Rmd
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Non-linear functions have an advantage over linear functions as the output range of the 

function can be specified, whereas a linear function as a range of -infinity to infinity. Below 

are some non-linear functions. 

• Sigmoid – An S-shaped function, which maps between 0 and 1. 

• Tanh (hyperbolic tangent) – An S-shaped function, which maps between -1 and 1. 

Both Sigmoid and Tanh functions suffer from a problem called vanishing gradients. This 

occurs when the input values to a function map to the limits of the function, causing a loss 

in gradient. This is a problem as optimiser functions use gradient values to adjust the 

weights of a neuron to improve model performance. [11] 

• Rectified Linear Unit (ReLU) – A linear-shaped function when the input is greater 

than 0, otherwise flat. Maps from 0 to infinity.  

• Softmax – Similar to Sigmoid but, used for multi-classification tasks.  

 

Loss functions  

Calculated during the training of a network, loss functions are used to measure the error 

between a model’s predicted output and the actual output. The higher the error, the worse 

the model tends to perform when tested. The loss function that will be used for this project 

is binary cross-entropy, which is used to measure the loss for input with the probability 

value between 0 and 1. In this project, a data sample is either interesting (1) or 

uninteresting (0).  

 

Optimiser functions 

In this report, due to time constraints, we shall focus on only one type of optimisation 

algorithm, gradient descent. These algorithms minimise or maximise the loss function by 

using its gradient values and alter the weights of neurons to adjust the model. The examples 

provided are improvements based on previous optimiser functions such as Momentum [12] 

and AdaGrad [13]. 

Examples of optimiser functions 

Adaptive moment estimation (ADAM) [14] is a method which computes adaptive learning 

rates for each parameter.  

Adadelta [15] is an extension of AdaGrad, which adapts the learning rate over time and has 

minimal computational overhead compared to standard gradient descent algorithms. 

Both functions are vast improvements than their predecessors, addressing the problems of 

the vanishing learning rate (discussed in the Recurrent neural network section of this report) 

and slow performance. 

 
 



13 
 

Types of neural networks 
An essential aspect of a neural network is in its architecture, which refers to the overall 

structure of the network.  

Convolutional neural network 

A convolutional neural network (CNN) is a neural network which specialises in processing 

data with a grid-like topology; this type of network is not applicable for this project, as the 

dataset does not follow this format. 

Recurrent neural network 

A recurrent neural network (RNN) is a type of artificial neural network with the addition of 

feedback loops in its network topology. RNN’s specialise in the processing of sequential 

data, such as sequences of vectorised text or pixels in an image. The addition of recurrent 

loops in the network allows the model to ‘remember’ what sequences it has been shown 

before, permitting previous computations to influence making new decisions.  

 

 

Figure 4. A ‘rolled’ RNN cell (left) and it’s ‘unrolled’ structure.2 [16] 

The ability of RNN cell to ‘remember’ is provided by a single tanh or ReLU activation 

function within the cells’ internal structure (Figure 5). 

The problem of long-term dependencies 

In deep learning, a task displays long-term dependencies if computation of the current 

output depends on input presented at an earlier time than the current input.  

It is challenging to train RNNs to capture long-term dependencies because their gradients 

tend to either vanish (most of the time) or explode (rarely, but with severe effects). This 

makes gradient-based optimization methods struggle, not just because of the variations in 

gradient magnitudes, but because of the effect of long-term dependencies is hidden [17] 

(being exponentially smaller with respect to sequence length) by the effect of short-term 

dependencies. [18]  

 

                                                      
2 http://colah.github.io/posts/2015-08-Understanding-LSTMs/  

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long term short memory  

Introduced in 1997, long-term short memory (LSTM) [19] is a variant of an RNN that is 

capable of learning long-term dependencies. Since its introduction, it has gained popularity 

in the fields of natural language processing (NLP) tasks, outperforming previous models and 

has set new benchmarks for performance.    

The internal structure of an LSTM cell consists of three gates (input, forget, output), and a 

cell unit. Gates use a sigmoid activation, while the input and cell state uses a tanh 

transformation

 

Figure 5.  The internal structure of standard RNN unit (left) and LSTM (right)3 [16] 

Figure 5 (b) shows the internal structure of the LSTM cell. The line running straight through 

the top of the cell represents the cells ‘memory’, allowing information to ‘flow’ between 

cells. The 𝑋𝑡 entry into the cell represents new input data, the arrow in the bottom left 

corner represents the ℎ𝑡 input from the previous cell (which was ignored by the previous 

cell).  

The first gate sigmoid (σ) is the input gate, it decides if an input value should update the 

cells state or should it be disregarded.  The gate computes a value between 0 and 1, the 

lower the value, the more likely the new input will be used to update the cell state. If the 

cell determines its state should be updated, it passes the input through another sigmoid 

layer and then through a tanh function which is used to map the output of the sigmoid 

function to a range of -1 to 1. The cell then multiplies the tanh output by the output of the 

sigmoid gate; this removes the features that the cell did not require, allowing the cell state 

to be correctly updated. [16] 

                                                      
3 http://colah.github.io/posts/2015-08-Understanding-LSTMs/.  

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Training a neural network 

Batching & Epochs  

Batching is a technique used to specify how much training data is fed into the network 

before weights are adjusted. Batching also affects the training time of the model, as the 

smaller the batch size, longer the training time. The value of epoch states the number of 

times the model will be shown the entire training dataset. Large epoch values should be 

used for larger batching, as this will give the model more time to minimise loss. 

Early stopping 

During the training of models, model performance can sometimes plateau after a certain 

number of epochs. After this point, the continuation of training provides no significant 

improvement to the performance of the model, it instead merely increases the total time 

for the model to train. To determine when a model should stop training monitoring of the 

validation error is required. When the error of this metric does not improve after a given 

number of epochs, the model should stop training.  

Dropout 

Dropout is computationally inexpensive, and useful method of preventing over-fitting. It 

works by randomly dropping out neurons from the network during training. In a fully 

connected layer, neurons are prone to develop a co-dependency amongst one another. This 

co-dependency reduces the impact of neurons not connected to this dependency. 

Therefore, the random removal of neurons during training is supposed to stop the 

formation of co-dependencies. 

CPU training vs GPU training 

The central processing unit (CPU) and GPU are two essential parts of computer hardware. 

The CPU is the central unit in computer hardware which conducts arithmetic required for 

programs to run. GPU’s are also used for computation but have typically been specialised to 

processing inputs in the form of vectors (initially images). GPU’s are capable of performing 

thousands of more calculations a second more with a CPU’s. As training a deep learning 

model is a computationally expensive task to do, it makes sense for these computations to 

be run on a GPU instead of a CPU. The result of this is a significant improvement in reducing 

the time taken for training.  
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Methods for text vectorisation  

The need for pre-processing of text 

Text in its raw format is not processable by computer. To allow computations to be 

performed using text, it must be converted into a vector. The process of text vectorisation is 

main up to three parts. Text tokenisation, text ‘cleaning’ and vectorising.   

Text tokenisation is when a sentence or list of phrases are split up into individual words. 

These words are then individually inspected by a text ‘cleaner’, whose job is to remove 

‘noise’ in the dataset. In text classification, noise is defined as a character or word that does 

not add value when the probability of a sentence belonging to a category is calculated.  

The removing of items such as punctuation, digits and common English words (also known 

as stop words) is the standard practice of a text cleaning function. The removal of URL’s is 

also recommended when processing tweets, as a large proportion of tweets use these, but 

rarely add value to a classification unless a URL is repeated shared which is unlikely. 

Bag of words model 
The bag of words (BoW) model is a simple and computationally cheap method used to 

extract features(words) from a corpus (collection of documents/words). BoW is a list 

representation of the number of individual words within a corpus and the occurrence of 

each word without considering their order. This list can then be used to convert sentences 

into vectors by comparing the sentence against the BoW model, ready for input into a 

machine learning/deep learning model.  

One hot vectors  

One hot vectors is a method of vectorising a sequence of words. It is the simplest method 

suitable for input into a model. The length of the vector is the total size of the BoW. When a 

text is encoding using one hot, its length is the total length of the vocab. If a word is present, 

there is a 1 value. Otherwise, it is 0. This approach gives a ‘sparse’ matrix, which is largely 

filled with 0 values.  

 

TF-IDF 

TF-IDF (term frequency-inverse document frequency) is a statistical method that determines 

how important a word is in a corpus. Typically used in large documents, a word is weighted 

based on its rate of recurrence within a document, compared to its frequency within the 

corpus. This weighting helps to normalise frequently occurring words. 

 

Figure 6.  One hot encoding example. 
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Performance metrics  
To accurately evaluate a model, we need to compute a variety of performance metrics that 

give a holistic view of the model; these metrics can then be directly compared against other 

models to determine which method is superior.  

Accuracy 

Accuracy is calculated as the number of correct predictions / total number of samples in the 

dataset. In unbalanced datasets, this metric can be misleading and should not be solely 

relied on. 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑎𝑚𝑝𝑙𝑒𝑠
 

Confusion matrix 

In (binary) classification tasks, four base figures can be calculated that determine how 

successful a model has been at predicting the defined classes.  

• True positive – This score is generated by the count of correctly predicted samples in 

the positive category  

• True negative – This score is generated by the count of correctly predicted samples 

in the negative category  

• False positive – This score is generated by the count of incorrectly predicted samples 

in the positive category  

• False negative – This score is generated by the count of incorrectly predicted 

samples in the negative category  

These four figures are usually plotted in a confusion matrix, which gives an easy to interpret 

matrix or graph that provides greater insight into how a classifier works compared to 

accuracy alone.   

Precision  

Precision is used to determine the proportion of positive classifications were correct.  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
 

Recall  

Recall is used to determine the proportion of actual positives that have been correctly 

identified. In binary classification, recall is known as sensitivity.  

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
 

F1-Score 

This is a weighted average of recall and precision. It provides a better representation of a 

model’s accuracy when using unbalanced datasets. 

𝐹𝛽 = (1 + 𝛽2)
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
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Cross-validation 

Cross validation is a model evaluation method that is better than training and testing a 

model a singular time. The problem with singular evaluations is that they do not give an 

indication of how well the model will do when it is asked to make new predictions for data it 

has not already seen. One way to overcome this problem is to not use the entire data set 

when training a model. Some of the data is removed before training begins. Then when 

training is done, the data that was removed can be used to test the performance of the 

learned model on ``new'' data. [20] 

 

 

LIME 
LIME [1] can explain how each word contributes towards a class prediction. When used in 

text classification, LIME takes a single sample as input (a sentence or sequence of words) 

and replaces and removes each word. Creating 5000 combinations of the sequence of 

words. It then runs these combinations through a trained model, recording the scores of 

each combination. As words are removed, the probability towards a class is expected to 

change. Therefore, when a word is removed, the larger the fall in probability towards a 

class, the more likely that the word positivity contributes towards that class prediction. 

 

 

  

Figure 7- Lime example 
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Tools and libraries used 
Below are listed the installed libraries used for this project. 

Anaconda 3 & Jupyter notebooks 

Anaconda 3 is a Python library distribution package. It has allowed for fast and 

straightforward installation of multiple vital packages such as Pandas, NumPy and 

Matplotlib which are used throughout the implementation. Jupyter notebooks [20] are a 

particularly important part of this distribution, as they provide a python-based editor 

through a web browser. Using Jupyter notebooks has allowed for quick prototyping of 

models and easy sharing and showcasing of code. 

NLTK 

An imported Python library that is used in the pre-processing of text. The library contains a 

corpse of stop-words which are used to filter commonly used words from the dataset. 

GloVe (pre-trained word vectors) 

In the implementation of the LSTM, a GloVe [21] pre-trained vector file to in an embedding 

layer to improve performance. The data used contains 400,000 unique words.  

Scikit-learn 

As a part of the Anaconda distribution, Scikit-learn [22] is machine learning library in Python. 

It provides simple and efficient tools for data mining and data analysis tasks. It has been 

used to create the machine learning models and Keras wrapper in this project.  

LIME 

Lime [1] is a library which can be used to explain predictions behind a black box classifier. It 
also supports sci-kit’s pipeline function which allows for easy integration into a sci-kit model.  

TensorFlow  

TensorFlow [23] is a popular deep learning library. Predominantly written for use in Python, 

it is a well-supported standalone library itself, using NVIDIA’s CUDA / CuDN software for 

GPU training.  

Keras 

Keras [24] is a high-level neural networks API written in Python. For this project, Keras was 

used to design and implement the LSTM using TensorFlow backend, as Keras provides 

multiple easy to use text-pre-processing tools.  

NVIDIA 

In order to speed up the training time of the neural network, training on GPU compared to a 

CPU became a necessity. [25] To do this TensorFlow required two pieces of NVIDIA 

software. The training performance comparison can be viewed in the implementation 

section of this report. 

1. CUDA Toolkit9.0 [3] – allows for GPU training and parallel processing using  

2. CuDNN v7.0 [26]– GPU accelerated library for deep neural networks. 
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Experimental work 

Choice of dataset 

To validate and develop the skills required to create a machine learning based classifier, we 

decided first to implement a Bayes classifier using a well-known and researched dataset. 

After some extensive research, we decided to use the 20Newsgroup dataset as a 

benchmark. [27] As it was found to be supported by multiple research papers which had 

given comparable metrics to achieve. LIME paper also cites the 20Newsgroup as an example 

of its application. [1] 

Bayes implementation  

Much of the work from this implementation has been built on to create the features used in 

both machine learning and deep learning implementations. As an excellent introduction to 

machine learning, the Sci-kit learn library contains the 20newsgroup dataset ready for input 

into a classifier. The module allows importation of all 20 newsgroups, but Atheism and 

Christianity have been chosen as categories to enable comparison against performance 

scores in well cited research papers. [1] [27]. 

After the importation of the relevant libraries, Code Snippet 1 defines the required 

categories for training and testing. The function fetch_20newsgroup then splits the data 

into a train and test set. It takes in parameters to specify what parts of the dataset should 

be loaded. In this example, the headers and footers from each sample are removed, this is 

used to improve the reliability of the model during prediction. [28] 

 

Code Snippet 1. Loading in data for Newsgroup classifier. 

A pipeline function is then created. The pipeline function is a sequential list of transforms, 

followed by the definition of the classifier model. The transforms steps are used to 

manipulate the input data to the pipeline (dataset) into the required input for the model. In 

this case, we use the CountVectorizer function to create a BoW model from our text corpus. 

The stop_words parameter is used to compare the corpus against common English words 

and stops them from entering the BoW. 

The pipeline is then ‘fed’ the training data, which is given as a list of strings 

(newsgroups_train.data) and the actual class of the string (newsgroup_train.target). 

This can, however, be simplified by using a TFIDFVectorizer instead.  
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Code Snippet 2. Pipeline creation and model fit for Newsgroup classifier. 

Testing of the classifier occurs when the predict function is called with the input of the 

testing data 

 

Code Snippet 3. Testing of Naïve Bayes implementation for Newsgroup dataset. 

 

This high level of model accuracy was consistent with the ones published in well cited 

research papers which was between 83-91%. 
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Method 

Data cleaning and pre-processing 
The first task of this project was to process the data in such a way that it could be easily 

used as input into both models. Once loaded, a pre-processing function was defined that 

took the raw text as input and outputted a text sequence that would be ready for input into 

the models. 

Once the texts had been pre-processed, we then needed to generate the required datasets 

used for model training and testing. To do this, a train/test split function was used to 

pseudo-randomly create the training and testing sets while maintaining the ratio of 

interesting to uninteresting tweets. After consultation with various professionals in the field 

of machine learning, it was suggested that an 80:20 training/test split should be used for the 

machine learning model and a 70:10:20 train/validation/test split for the deep learning 

model. The validation set used in the deep learning model is created later during the 

initialisation of model training. 

As the collected dataset has roughly a ratio of 20:1 (uninteresting to interesting), if time 

permitted, it was decided to investigate how the change in ratio changed the performance 

of a model. Typically training on an equal split ratio of classes is recommended, but as this 

split does not replicate the real-world ratio, it was considered insightful to explore. To allow 

a fair comparison between all models, all random functions used the same starting seed, so 

that all models would have the same randomly generated sequence of training and testing 

data. 

Design of the machine learning model 
Given the research into which Bayes approach should be used for this project, it was still not 

clear which implementation should be favoured. From an academic view, most of the 

papers that researched Bayes preferred the Multinomial approach [9] [27]. However, the 

description of the Bernoulli approach seemed to be better suited to this binary classification 

problem. It was therefore decided to create two Bayes models for comparison. The best 

performing method would then be used to compare against the deep learning 

implementation. The BoW approach was chosen to learn the vocabulary ready for input into 

the models, as it is simple and easy to implement for beginners to machine learning.   

The models were implemented using the sci-kit learn library. This was due to the familiarity 

with available functions in the library, gained from prototyping the 20newsgroup dataset. 

The high-quality documentation of the libraries. API’s and source code also made 

implementing and learning new concepts easier. Unlike the 20newsgroup dataset, the TF-

IDF was not used in implementing the final Bayes classifier, as during prototyping it leads to 

a reduction in overall performance compared to the standard BoW model. 
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Design of the deep learning model 
Out of the available versions of deep learning models, it was decided that a model with the 

ability to ‘remember’ certain words which caused a probability to either category should be 

used.  This naturally led to the introduction to RNN’s, and subsequently to the LSTM variant. 

Due to its ability to handle long-term dependencies, leading to improved performance over 

RNN’s. [29]  

The implementation of the model was initially written using TensorFlow. During the 

research stage of the project, it seemed that TensorFlow was the most widely used and 

supported deep learning framework, meaning there was more likelihood for support to be 

available should any problems occur during development of the implementation. 

TensorFlow also supports the training of neural networks using a GPU. However, we 

encountered a lot of issues in using the TensorFlow method with LIME, so implementation 

was switched to Keras.  

Model parameters 

Unlike the Bayes model, deep learning models have a plethora of functions that can be fine-

tuned to improve model performance. The majority of these were decided during the 

laborious stage of training the model using trial and error. During our research, it seemed a 

common theme that using the ADAM optimiser would provide the best results for the 

project. [30] 

An additional design decision for this model was the introduction of an embedded layer. 

Due to the reliable computational power of modern computers, and small dataset size, the 

one-hot encoding of vectors used in the machine learning approach had little effect on the 

training time. Therefore, there was no need for further runtime optimisation. However, in a 

neural network, the vectors(tweets) have calculations frequently performed on them as 

weights are adjusted during training. The sparseness of one hot-encoding means that many 

redundant calculations occur, contributing to a significant increase in training time of a deep 

learning model to perform the task of text classification tasks. 

 

Performance comparison 
During the initial design stages of this project, it was determined that if a classifier could not 

achieve good results, then it would be preferable for it to classify negatively. As the system 

could then be used to omit a significant amount of uninteresting twitter data reducing the 

amount of data an analyst would have to look through.  

To determine how successful a model was, various performance metrics needed to be 

computed. When the models were first being tested, the output metrics given as the 

precision score, recall and F1 score. As knowledge grew about how functions worked, 

confusion matrixes were introduced to provide more insight into how changing model 

parameters affected model performance. When it came to compare the models, 10-fold 

cross-validation was used to provide assurance that the model’s score was reliable and 

wasn’t an anomaly caused by a distorted training and testing set. The value of 10-folds was 

chosen as it is a good balance between the time taken and validity of results [31] 
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LIME predictions 

The application of LIME predictions is well supported by its creators. However, during this 

project, there was no function which could provide multiple explanations at the same time. 

It was therefore required to design a function which would generate explanations for the 

entire testing set. This would allow the analyst to gain an insight into if the classifications are 

correct. To compare the explanation results between each model, the top 25 contributing 

words for a positive (interesting) and negative (uninteresting) classification were shown to 

an analyst. To avoid bias, the analysts were not told the name of each model but asked to 

decide which model they trusted the most and therefore believed would be the most useful 

when applied to real-world setting. 
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Implementation 
There is frequent code re-usage between all implemented models. Especially between both 

Bayes implementations, (it is almost identical). To provide a more concise description to the 

reader, the explanations of model implementation will not be repeated. Full 

implementation details can be found in the code submission. It is also worth noting the 

change in naming convention used in this implementation. To provide greater clarity during 

prototyping, the naming convention of ‘x’ as data and ‘y’ as target have been changed to 

‘data’ and ‘target’. 

Data formatting  
The dataset for this project was collected from two different systems at the Cardiff 

University Crime and Research Centre. The interesting tweet data were sourced from a 

social media database, which had been populated by range of social media platforms. The 

other was sourced from the output of a web scrapper called Sentinel, which provided the 

uninteresting tweets.  The two systems outputted different file types, a txt file and a json 

file. Therefore, it made sense to convert both files to the same file format so that they could 

be processed more easily.  

 

 

On inspection of the files, they both contained extra information related to each tweet that 

was not going to be useful for the classifier. For this project, we are only interested in the 

text of a tweet and its creation date. Code snippet 4 gives an example of the type of 

function that was used to extract the text data from the interesting data file. Similar 

functions where used to retrieve information from the json file.  

  

Code snippet 4. Index search text data in the interesting tweets data output file. 
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Once the required data had been extracted from both datasets, they were exported to 

tabula format(csv) to conduct further processing. The first task was to check to see if there 

are where duplicated entries in the set, as repeats of the same value could cause a 

distortion in the data. Only when it came to view the files in file explorer was it noticed that 

the CSV data files take up more space than a standard excel workbook. The csv files were 

then saved a .xlsx instead for better transportability between computers.  

Code snippet 5. shows Excels’ remove duplicates function in which found no duplicates.  

 

  

Data pre-processing 

Loading in of data 

Across all models, the get_data() function has been used to load both datasets and return 

pandas data frame data types. As dataset is unbalanced, uninteresting dataset is randomly 

sampled to match the count of interesting tweets. The random state value is the starting 

seed for this random selection and is kept the same to ensure all models are fed the same, 

pseudo randomly generated dataset. 

 

 

Code snippet 5. Remove duplicate function in Excel 

Code snippet 6. Load in excel files and split into two files.  
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Data cleaning and train/test split 

The text_preprocessor () function takes in a tweet as an argument, it converts the words in 

the tweet to lower case, removes a selection of specialist stop words, digits, URLs and 

common English words. The function then returns a list of processed(cleaned) words which 

are larger than 3 characters long. 

The split_data() function takes both loaded datasets as parameters, each dataset is then 

split into training and testing files with a split of 80:20 training to testing data. The two files 

are subsequently split up into text (containing the tweets) and target files. The 

text_preprocessor () function is then applied, and four files are returned.  

During the initial stages of development, this pre-processing step was performed by passing 

the text_preprocessor () to the model. However, this lead to an increased computational 

overhead, as the text_preprocessor () results were not saved on exit of model training and 

testing and therefore had to be recomputed every time the model was run. 

  

Code snippet 7. Pre-processing function. 

Code snippet 8. Generation of datasets 
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Code snippet 9 showcases the input and output from the text_preprocessor () function. 

Index 16,106 shows how the majority of ‘filler’ words like ‘Pls’ are removed. One exception 

to note is that this function does not remove twitter handles or hashtags used in tweet data. 

Instead, it merely removes the punctuation surrounding it. Therefore, in 12,889 indexed 

sample, one can see how an individual has retweets the @NaDialna handle, which has 

subsequently been converted into nadialna. This is a ‘stupid’ feature of the pre-processor 

and does lead incorrect categorisation later. 

 

Machine Learning implementation 

Multinomial definition 

The CountVectoriser function is used to take the input of tweets and return a matrix of 

token counts. (BoW) Use of smoothing set at 0.1. As described in the 20newsgroup 

implementation, the pipeline function is a list of transforms and functions which are 

grouped together for ease of model implementation and showcasing of code. 

Bernoulli definition  

In the Bernoulli implementation it is worth noting that there is no Laplace smoothing, as 

shown in the description of the model, there is no α in its equation. 

  

Code snippet 10. Multinomial model and CountVectoriser definition. 

Code snippet 11. Bernoulli model and CountVectoriser definition. 

Code snippet 9. Comparison between raw and processed tweet data. 



29 
 

Training and testing 

This pipeline function is an optimised method for training and testing a model. ‘. fit’ 

performs the training of the model, with the supplied training_data and training_target. 

‘.predict’ then tests the model using the testing data. 

Visualisation of performance metrics  

The plot_confusion_matrix() function constructs a graphical presentation of the confusion 

matrix. It can display either the count or the ratio of each class. During the trial and error 

stage of model training, sci-kit learns classification report was used to provide an quick 

overview of precision, recall and f1-score for each category.  

Cross Validation 

The cross-validation splitter function requires one data input and one target input. As the 

current implementation already defined the train/test split, the get_cv_data() function was 

created to act as wrapper function for the other get_data() functions.  

StratifedShuffleSplit is the method used to perform the splitting of cv_text, unlike a 

standard splitter it maintains the ratio between the categories based on their corresponding 

target values given in cv_target. The metrics that we want to keep track of during each 

cross-validation are defined in the scoring_metrics dictionary, these are precision, accuracy, 

recall and the values that make up a confusion matrix  

 

Code snippet 12. Bayes model training and testing. 

Code snippet 13. Cross validation load dataset function. 

Code snippet 14. Bayes cross-validator. 
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Lime  
The prototyping LIME code has been omitted from this report, but it can be found in the 

code submission files. Further to how LIME was described in section research, the LIME 

library is still in its infancy stages and does not have much functionality. During the 

implementation of this project, it was only possible to gain one explanation at a time from 

LIME. Generating the explanations for the testing dataset was more difficult than expected. 

As when even when using a loop on the explain instance, the explainer would crash at 

around 150 instances. Therefore, the get_class_predictions() function was created(Code 

snippet 15). It can adapt to a varying input of testing data, making it useable across ratio 

splits. It then returns the count of each explanation and it’s total sum. 

The sum of a LIME prediction is the total amount that  

In order to reduce bias towards which frequently occurred in a class ( but had a low scoring) 

the score values where divide by the number of occurrences it had been used to generate a 

prediction.  

The lime explainer crashes if more than 200 instances are passed through it in this way.  

Code snippet 15. Generate LIME predictions across dataset function. 
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Deep learning implementation 

TensorFlow 

At the time implementing the deep learning model, TensorFlow had little to no tutorials 

covering text classification. Any text-related tutorial only implemented the word2vec 

method for sentence sequencing. So, it was a struggle but to start work on text 

classification. However, after much perseverance, I was able to create a working mid-level 

API implementation. (The TensorFlow code can be found in the other code section of this 

report). The problems then came with the trying to add the LIME explanations to the model, 

as LIME didn’t work when using tensors and I did not have enough experience in using 

TensorFlow to adapt the program accordingly. Therefore, it was decided that, a new 

approach was to be found. After further research I came across Keras, which was much 

more suited for text classification and provided clearer documentation.  

Therefore, I had lost a considerable of time with no useful results to show for it.  

Keras 

The Keras implementation used the same data input functions as described in the machine 

Model definition 

 

Keras provides a high-level Sequential model, which allows for neural network layers to be 

stacked linearly. The input of the model is an embedding layer, which feeds into the LSTM. 

The LSTM then has a dropout of 20%. Finally, the dense layer is the output layer of this 

model, a sigmoid function is used to map the output. (code snippet 16). This LSTM_model is 

then  fed into a KerasClassifier function which acts a wrapper ready for input into sci-kit 

learn in order to generate predictions.  

 

 

Code snippet 17. Current LSTM architecture.  

Code snippet 167. Keras - Sci learn wrapper 
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This is an example out of how a tweet would be represented before it enters the embedding 

layer(a reduction in the number of 0’s compared to a one hot-coding approach)  

 

 

 

 

 

 

 

Code snippet 19 gives the training time for each cycle of the LSTM. The left uses a CuDNN-

variation which runs its calculations on the GPU compared to a standard LSTM cell which is 

run on a CPU  

 

Problems I had to overcome: 

Installation of TensorFlow caused more hassle than expected 

 

Keras model cross validation. During the final stages of implementation, when it came down 

to evaluate the model, there was a frequent error with trying to get the sci-kit learn cross 

validation function to run, so instead I wrote my own function to compute the scores. 

 

 

 

 

Code snippet 19. GPU (left) vs CPU (right) training performance. 

Code snippet 18. Example of embedded tweet with sequence padding. 
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Results 

Confusion Matrices  

 
(Figure 8) Showcases the cross-validated confusion matrixes of the Bayes methods.  As we 

can see there is little difference between the two implementations and are within +/- 3% of 

each other. Therefore, from these results alone we cannot determine which Bayes method 

is preferable. Both methods when comparing against the LSTM implementation (figure 9), 

provide preferable results, with a improvement of around 2%. I am however, sceptical of 

this. I found that during the training of the LSTM, that the performance values would 

fluctuate around +/-5% of the values shown. Which, I am not currently able to explain why, 

and recommend that this needs to be investigated further, as this subsequently has a large 

impact on every time the LIME predictions are generated.  

 

 

Figure 8. Multinomial(left) & Bernoulli(right) confusion matrix’s. 

Figure 9. LSTM confusion matrix 



34 
 

 

Overall metric score  
 

 

 

 

 

 

The overall scores produced from this set of cross-validated models. With each Bayes model 

outperforming the LSTM implementation, which was an expected outcome given the 

confusion matrix results. 

LIME results 
Here below are the outputted results from LIME. Further graphical models are available the 

notebooks of each module in the submission of code. 

 

 

 

 

 

  

 

 

 

 

 

 

  

Model Name Accuracy (%) Precision (%) Recall (%) 

Multinomial 
Bayes 

82.2 80.0 85.6 

Bernoulli Bayes 83.2 82.9 83.8 

LSTM 79.7 81.5 79.1 

Table 1. Cross validation results 

Figure 10. Words most likely to cause an interesting classification. Multinomial Bayes (left), Bernoulli Bayes (middle), LSTM (right) 
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After showcasing these predictions to security analysts at the Cardiff University Crime and 

Research Centre, the consensus was that the LTSM showed better positive results, as it had 

not learnt the ‘event names’ for an interesting classification like the Bayes classifiers had. As 

both Bayes classifier have a high scoring of ‘juventusfc’ relating to the football match that 

occurred in Cardiff. It was also notable to see that positive classification of the pictwitter 

link, signifying there is more work to be done on the pre-processing of the text before 

model training.  

For the negative set, it was the Bernoulli implementation that was preferred. Showing that a 

possible combination of models might be suitable for the best in world results.  

The most uninteresting word lists contain a lot of words that we might consider to be 

interesting, given the general context of a conversation. I believe the reason for this is that 

many of the uninteresting tweets are related to the events that surround the interesting 

tweets. Meaning that they maybe about the same topic, but are not marked as interesting 

as this information may already be captured by other tweets or sources of social media. 

The two explanation figures below showcase a side by side comparison of how each 

classifier has classified the tweet. Along with how much each word was adding to that 

prediction. 

  

Figure 112. Words least likely to cause an interesting classification. Multinomial Bayes (left), Bernoulli Bayes (middle), LSTM 
(right) 
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Explanation 1. Multinomial (top), Bernoulli (middle), LSTM (bottom). For index 14. 

Explanation 2.  Multinomial (top), Bernoulli (middle), LSTM (bottom). For index 112 
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Future work  
From this project there are several avenues in which we believe have value in exploring. In 

the future, we would be interested in looking at the addition of a conversational interface to 

with the LIME explanations function, which was originally proposed as the third aim in this 

project. This conversational interface could have a noticeable impact on operations at the 

Cardiff University Crime and Research Centre, as this could be set up during the planned 

monitoring of an event. Allowing an analyst to verbally question a classification while 

performing other tasks. 

Measures which would improve the current classifier performance are also considered 

valuable. The improvement of the text processing function so that it can more reliably 

remove unwanted objects from the dataset. The addition of a twitter accounts username 

when making a classification could lead to greater insights and better classifications. 

Throughout this project, many sources of interesting data samples have come from twitter 

accounts of high profile individuals or government agencies. Both of which could lead to a 

noticeable improvement in classifiers performance matrix and explanation output. It would 

be useful to try and experiment with the process of model checkpointing. It was achieved 

too late on in the project to be able test it out fully, but it may be a solution to the LSTM’s 

fluctuating performance metric problems.  

We also believe that further research into other forms of neural networks to implement 

could provide value. As during the ongoing research involved with this project led to the 

discovery of CNN implementations claim to have improved on the performance of a basic 

LSTM without the costs of high computational time. [18] [32] 

 

Conclusion  
The aim of this project was to develop two text-classifiers which would be able to explain 

reasoning behind a tweet’s classification into one of two categories through an Alexa based, 

conversational interface. This aim however, was not fully achieved. Two out of the three 

aims initially set out in the project plan have been achieved. The first is the successful 

creation of two classifiers which can classify tweets into one of two categories with a good 

level of success. The second, is the ability for these classifiers to explain the reasoning 

behind each classification, demonstrating to an analyst if the classifier can be trusted to 

make correct future predictions. The third aim of the Alexa based interface has not been 

achieved in this project but is considered in the future works section. 

The methodology in which the results have been collected in this project is to be relied 

upon. However, the fluctuation in performance of the LSTM means that comparison 

between the two models gives a good oversight but, should not be considered accurate 

without further investigation into the cause of the fluctuating metrics. 
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Reflective points 
In reflection, I wish that I had allowed more time to write this report. Even though I had 

stuck to my initial plan and given myself three weeks to write this, I still do not believe it has 

been enough. I have grossly underestimated the amount of time it would take to write, I 

therefore feel that I have not been able to fully showcase my knowledge surrounding this 

project. Particularly in the results and conclusion section of this report, as I had generated a 

variety of data visualisations that would enhance the reading of the report, but I 

unfortunately have run out of time.    

I would also like to reflect on the knowledge that I have gained, before starting this project I 

had no previous knowledge of any of the topics it has covered, everything in this report has 

been self-taught which I am very proud of. The formation of knowledge in topics related to 

machine learning and deep learning will provide invaluable to me in my future career. The 

challenge of learning a difficult topic and one which can be related to state of the art 

technology has been a real pleasure.  

I have also learnt that things will inevitability go wrong in projects like these, and that I 

should plan in case failure does occur.  

 

 

 

Table of Abbreviations  
Abbreviation  Meaning 

GPU Graphics Processing Unit 

GDPR General Data Protection Regulation 

SVM Support Vector Machines 

MLP Multilayer Perceptron 

ReLU Rectified Linear Unit 

ADAM Adaptive Moment Estimation 

RNN Recurrent Neural Network 

CNN Convolutional Neural Network 

LSTM Long-term Short Memory 

NLP Natural Language Processing 

CPU Central Processing Unit 

BoW Bag of Words 

TF-IDF Term frequency-inverse document frequency 
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