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Abstract 
For uses in 3D graphics and product design it can be greatly beneficial to have an accurate 

method of measuring saliency. These methods can be used in place of eye tracking 

experiments to produce an estimate of what a human might perceive as salient without the 

need for expensive equipment or to gather a large number of volunteers. These saliency 

methods are not always completely accurate and so this report aims to measure the 

accuracy of several different existing methods of detecting saliency and then learn a new 

model of measuring saliency using existing methods. 
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Introduction  
In recent years 3D data has become increasingly popular especially as 3D media technologies have 

improved. Some of the major applications of 3D data include special effects for film, gaming, 3D 

printing and 3D architecture modelling. When manipulating a 3D model via downsizing, stretching or 

deforming in some way salient (i.e. important) areas on the model need to be preserved to maintain 

the overall quality of the model. 

This dissertation will develop a method for measuring salience on a 3D model. Salience will be 

measured by running experiments with an eye tracker which will produce a saliency measurement 

that is accurate to human visual judgement. using the data gained from the eye tacking experiment 

existing methods can be evaluated by comparing the importance the existing method gives each 

vertex (i.e. the saliency map) with the experiment data saliency map. The saliency map comparison 

will be conducted by SSIM which has been modified to take saliency maps rather than 2D images. 

Existing methods of measuring saliency are based on low level geometric features of the 3D mesh. 

this dissertation will use machine learning methods with the eye tracking data and the existing 

method data to optimise a new method of measuring 3D salience to better predict human 

perception of salience. 

Measuring 3D saliency with an eye tracker could be used by advertising companies that wanted an 

insight into how their products are perceived and what stands out on their products, as is done on 

two dimensional advertisements. Producing a learned method of measuring saliency that better 

represents human perception would allow for more accurate feature preservation when 

manipulating a model. 

This project was started as a Cardiff University Research Opportunities programme project, during 

the programme I managed to produce a method that took in 3D models and produced images for 

the eye tracking experiment. Once eye tracking data had been captured it then remaps the data to a 

saliency map on the original model. Some preliminary experiment data was collected during this 

project. 

 

Background 

Saliency 
The concept of saliency is well documented and researched and is described as the “distinct 

subjective perceptual quality which makes some items in the world stand out from their neighbours 

and immediately grab our attention” (Itti, 2007). There is no one quality an object can have to make 

it salient as an objects salience in a scene is dependent on how unique its attributes are to the other 

objects that are around it. Work in 2D image saliency has made substantial progress towards 

measuring low-level features in images like colour, intensity and orientation using these features in 

different spatial scales and taking the surrounding area into account (Itti, 2007). In simple scenes 

these low-level features would be enough to predict where a person would look, however there is 

semantic information that would immediately grab a person’s attention like an image containing a 

person or text that aren’t necessarily picked up by the low-level features. The same multi-scale and 

centre-surround methodologies exist in model saliency as image saliency however, the low-level 

features change from colour and intensity to geometric information like distance between points 

and curvature. 



Evaluating methods of measuring saliency 
There are many methods of detecting saliency in a 3D model but there is little in the way of 

evaluating the effectiveness of these methods. Many papers use heatmaps to show salient areas on 

a model or use saliency guided mesh simplification to show the method preserving interesting areas. 

While these methods are effective at showing how a method works on a high level it makes it 

difficult to compare the effectiveness of different methods as these are only subjective methods of 

evaluation. This project aims to provide a new way of comparing methods of measuring saliency in a 

quantifiable manner by generating a ground truth using an eye tracker and comparing the ground 

truth saliency map with the method produced saliency maps using SSIM as the quality assessment 

function. Once these methods have been evaluated a new method can be learnt which combines 

several different methods to hopefully produce a more accurate model. A very similar endeavour 

was done on 2D images by (Judd, et al., 2009) where they took eye tracking data and evaluated 

existing models. While evaluating their methods they found several areas that existing models were 

inconsistent with the human eye tracking data, meaning they can add primitive methods to account 

for the inconsistencies for their learnt model.  

SSIM 
This project uses a modified version of an image quality assessment model called structural similarity 

(SSIM). This quality assessment model, developed by (Wang, et al., 2004) assesses the structural 

similarity between two images, used in the context of quality assessment a distorted image can be 

compared to the original image to compute how visually accurate the distorted image is to the 

original. The SSIM method combines three components to produce a similarity measure between 

two images; luminance, contrast, and structure. Comparing two images A and B the SSIM method 

takes a spatial patch around each pixel to get local information around the pixel, pixel intensity is 

then scaled by a gaussian function to give points nearer the centre of the patch more influence. the 

mean intensity of the patches is then calculated producing µx and µy where x and y are spatial 

patches of pixels in the same spatial position in images A and B respectively. From these means a 

luminance comparison function can be made 

𝑙(𝑥, 𝑦) =
2µ𝑥µ𝑦 + 𝐶1

µ𝑥
2 + µ𝑦

2 + 𝐶1

 

Where the constant C1 is included to stabilise the function when µx + µy approaches zero. The 

standard deviations σx and σy of the spatial patches are used as a measurement of the contrast, with 

this measurement a contrast comparison function similar to the luminance comparison function can 

be made 

𝑐(𝑥, 𝑦) =
2σ𝑥σ𝑦 + 𝐶2

σ𝑥
2 + σ𝑦

2 + 𝐶2

 

Where the constant C2 is another stabilising constant. To calculate the final component needed a 

slightly different function is needed 

𝑠(𝑥, 𝑦) =
σ𝑥𝑦 + 𝐶3

σ𝑥σ𝑦 + 𝐶3
 

Finally, to compute the SSIM index of a pixel, following the same procedure laid out by Wang et al. in 

their paper; taking C3 = C2/2 produces the following function 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2µ𝑥µ𝑦 + 𝐶1)(2σ𝑥 + 𝐶2)

(µ𝑥
2 + µ𝑦

2 + 𝐶1)(σ𝑥
2 + σ𝑦

2 + 𝐶2)
 



More detail on how these functions were developed and how they sit together can be found in the 

paper written by Wang et al. In this project the only change made is how the information is 

delivered to the SSIM function and how the spatial patch is evaluated. Rather than sending a two-

dimensional image a list of values is sent with one value for each vertex representing the level of 

saliency at that vertex. The spatial patch around each vertex is found as every other vertex within a 

set distance from the initial vertex, this provides the local information that neighbouring pixels 

would supply in a 2D image. The area a pixel covers in an image is uniform for all pixels in that 

image, however this is not necessarily true for 3D models, each vertex will be connected to faces of 

different sizes and as such each vertex has a different level of influence on how the model looks. To 

account for varied vertex influence, each vertex’s saliency value will be multiplied by the vertex’s 

Voronoi area which for a triangular mesh is the sum of 1/3 of the area of each face the vertex is a 

part of. 

Existing methods of measuring saliency 
There are several existing methods of measuring saliency of 3D models, some of which I will evaluate 

in this dissertation and attempt to learn a new model using them, I am also using two primitive 

methods of detecting saliency. I have a centre bias model which simply makes vertices closer to the 

centre of the model have a higher saliency value, this accounts for peoples’ tendency to look at the 

centre of an image as noted by Judd et al. The second method takes the gaussian curvature of the 

model at each point, a lot of the existing methods include some form of gaussian curvature 

information but having this primitive gives my learning methods a little more flexibility. 

One of the methods used is a method by (Lee, et al., 2005) that uses the idea that areas that are 

expressing different geometric characteristics to the surrounding areas would be salient as people 

pick out things that are out of place. For example, a large spike in the middle of a flat surface would 

attract a lot of attention, but equally a flat section in an area populated by large spikes would be just 

as eye grabbing. A centre-surround operation is used which takes the difference between mean 

curvatures around each vertex then filtered with a gaussian. For each gaussian a gaussian weighted 

average of the curvatures of vertices within a radius that varies between gaussians, the different 

gaussians are then aggregated together using a nonlinear normalisation to produce the final 

computed saliency. More detail on this method can be found in the paper written by Lee et al. 

The second method utilised is a method which is a multi-scale computational model similar to lee et 

al. however it uses spectral processing rather than a difference in gaussian to measure saliency. This 

method developed by (Song, et al., 2014) takes the set of meshes being a group of meshes simplified 

to different degrees and computes the scale saliency map for each scale by computing the spectral 

mesh saliency for each scale. The scale saliency maps are then summed together to generate a final 

saliency map, further detail on this method can be found in the paper by Song et al. 

The final method used in this project is from a paper by (Pickup, et al., 2015) written to find similar 

models to a given model. This is done by converting the model into a canonical form by taking 

several feature points on a model and moving them as far apart from each other while maintaining 

edge length so as not to overly distort the model. These feature points are selected using the 

conformal factor to find the extremities of the model. This report will be utilising this feature point 

selection part of this paper by pickup et al. The conformal factor used in a paper on generating a 

new 3D shape descriptor by (Mirela & Gotsman, 2008). The conformal factor can be described as a 

scalar function on the model that will produce a surface with a constant gaussian curvature. using 

the conformal factor is pose invariant which means it should allow the learnt method to account for 

more dynamically posed models. 



Aims 
The aims of this project are, to generate a 3D heatmap of salient areas of a model using eye tracking 

data, evaluate how accurate current methods of measuring saliency is to the eye tracking data, and 

develop a new and improved method of measuring saliency using machine learning. 

Research question(s) 
In order to achieve these aims this project will gather eye tracking data from participants and 

develop a method for mapping the eye tracking data onto the 3D mesh, evaluate existing methods 

of measuring saliency by comparing their saliency maps with the ground truth using SSIM, learn a 

new method of measuring saliency using least squares regression and a feed forward neural 

network. 

Approach and Implementation 

3D heatmap of eye tracking data on a model 

Approach 
To accurately measure the saliency of a 3D model using an eye tracker several things need to be 

considered. Firstly, showing the model to the participant in such a way that the entire model is 

displayed, and no areas of the model are shown more than others. Secondly mapping eye tracking 

data back to a model to produce a heatmap to show the overall 3D saliency of a model. 

To generate eye tracking data, stimuli is needed. in a 2D context this is straight forward, measuring 

3D saliency of an entire model raises the question of how to display a model to a participant without 

biasing any part of the model. you could show the participant an animated image of the model 

rotating however, this can introduce a bias as people will lose focus towards the end of viewing an 

image. To show all parts of a model without introducing a bias this project takes 20 2D images of a 

model from different positions around the model. To ensure an even coverage the images are taken 

from the centre of different faces of an icosahedron scaled to surround the model. After these 

images are generated they will be used in an eye tracking experiment to get saliency data for each 

image. 

This project used 20 models as the data set for the eye tracking experiment. For each model a 

simplified version was added to the data set to see what impact simplifying a mesh had on its 

saliency. This means that a total of 40 models were used for the eye tracking experiment, each 

having 20 images to show participants. This was a large set of images, so it was split into 5 sub-sets, 

each participant would view a subset which contained 4 views of each model. It was decided to split 

the data set by view rather than by model as if a participant has already seen a model from several 

angles they would be likely to ignore certain features they have already seen. Each image is shown 

to a participant for 5 seconds then shown a grey screen for 2 seconds to remove any fixations based 

on the previous image. 

To map the saliency data back to the mesh, we need to know where the mesh vertices are in an 

image. To find this image to vertex mapping an image is taken from the same position the original 

image is taken from on the icosahedron with each vertex colour coded so that each vertex can be 

identified once the testing has been done. Once a vertex has been assigned a fixation, vertices 

around it will also gain saliency based on their distance from the original vertex this produces a 

smooth saliency map and accounts for some error in the eye tracking data. If several people look at 

the same point on a mesh but the eye tracker places their fixations around the true point, then this 



smoothing will make the true point more salient. Once all the fixations are mapped onto the mesh 

and smoothed the final salience heat map will be complete. 

Implementation 
to produce images for the eye tracking experiment the selected models need to be displayed to the 

screen. To achieve this functionality this project uses toolbox graph by (Peyre, 2007) taken from 

MathWorks file exchange to read and plot meshes form file. All of the models selected for use in this 

project are in the .obj format however this project should work with any file format the toolbox 

supports. 

 

Figure 1 data flow for eye tracking stimuli and remapping scripts 

Once the user has chosen the models they wish to use they should be placed in the selected models 

folder. The next step then is to generate the images needed for the eye tracking data. The script 

take_all calls the take_images script for each model in selected models which outputs images from 

around the model and the corresponding vertex maps. These images can then be taken to run eye 

tracking experiments and the results of those experiments should be placed in the test results 

folder. Once the test results are ready remap_all will call remap on each model in the selected 

model’s folder which will output a MATLAB figure of each model with its saliency heatmap and a 

comparison figure with the heatmap before and after normalising the views. 

take_images produces images as stimuli for the eye tracking experiment. To ensure complete 

coverage of a mesh without biasing the data 20 images are taken from different points of view 

around the mesh. These points are the centre of the faces of an icosahedron. These centre points 

are then scaled by the furthest vertex from the origin on the mesh so that the mesh nicely fits in the 

centre of the screen. For each point three lights are places around the camera to ensure each image 



has the same even lighting. Specular lighting strength was set to 0 as bright spots on a model could 

draw people’s attention and give areas of little geometric interest high saliency. take_images 

outputs a list of where each vertex is on the image along with another set of images of the model 

from the same 20 positions as the experiment images were taken. The purpose of this second set of 

images is to aid remapping the saliency data back to the model. A three-dimensional scatterplot is 

made to mark the location of each vertex on the mesh, each vertex marker is colour coded by the 

index of the vertex using RGB encoding. Each marker takes up exactly one pixel of the image, so 

when given a fixation location in pixels the remapping code can identify which vertex is at that 

location. The mesh and the background of the image are then coloured black. This ensures that the 

only thing with any non-zero RGB values are the vertices, otherwise the remapping code could take 

the grey areas of the mesh as a colour coded vertex and either have array bound errors or just 

incorrect vertex selection. The benefit of having the mesh in the scene and blacked out Is that 

vertices behind the mesh that would not be visible to a viewer do not show up on the vertex map as 

they are blocked by the mesh. This stops the situation where a fixation may lie between two vertices 

and the remapping decides fixation is on a vertex on the opposite side of the mesh, where the 

participant could not see at all. One issue I encountered while developing the vertex mapping code 

was that for the simplified meshes the vertex map was so sparse that for some fixations there were 

no vertices nearby, so the algorithm decided it was ‘outside the mesh’ and as such an anomaly. To 

circumvent this issue, I took all the simplified meshes and subdivided them. This preserved their 

simplified features while also having enough vertices to not cause issue with the remapping code. 

The remap script maps the eye tracking data to the 3D model. it iterates over each fixation in the 

experiment, for each fixation it takes the vertex map that corresponds to the image the fixation was 

on and taking the fixation x and y position in pixels and finds the nearest coloured pixel in the vertex 

map and decodes its RGB value into a vertex index. Once the fixation has been mapped to a vertex in 

this way its neighbours need to be found to smooth the saliency over the mesh. A quick method 

could be to check every other vertex to see whether it is within a set distance. While this method 

would work, for meshes with thin areas it would make the opposite side of the mesh salient. An 

alternative method would be to find the neighbours of the fixated vertex and add them to a border 

array. For each vertex in the border array check If it is within a set distance and if it is, then add it to 

the list of vertices to gain saliency and add its neighbours to the border array. This process continues 

until no more neighbours are within range of the initial vertex. This method can still allow salience to 

be added to the back side of a thin mesh if the point is near enough to the edge but for most meshes 

this is acceptable. An ideal method would be to include all vertices with a path to the initial vertex 

with a length less than the set distance however, for large meshes this method would take a very 

long time to compute for all fixations. The distance to include other vertices is set as the distance 

between the two farthest apart vertices divided by 20. This should provide around 5% of the mesh 

Figure 2 Example of an image from a view and its vertex map 



around the vertex. Once all the vertices to gain saliency from the fixation has been calculated each 

vertex gain saliency according to the following formula 

𝑒𝑑/𝑑max ∗ 𝑡 

Where d is the distance between the fixated vertex, dmax is the distance between the two farthest 

vertices and t is the time that the participant focused on that fixation, this means that quick scans 

over uninteresting areas of a model don’t distort the saliency map. 

Some views of a mesh will contain more interesting things than others which introduces an issue 

where when a participant is faced with an uninteresting view of a model they will still look at 

something, creating areas that are marked as salient but in truth are rather uninteresting. To tackle 

this issue a least squares regression is used to weight each view according to how much saliency a 

view gives to vertices that are common with neighbouring views. To achieve this an array Is made 

that contains view value pairs. For each fixation two views have in common two entries are made 

the first being the first view index and the saliency value of the common vertex from that view. The 

second entry is the second view index and the negative of the saliency value of the common vertex 

from the second view. This array is then solved by least squares using the MATLAB ‘\’ operator. This 

outputs a set of weights to scale each view by. If a view has a lot of fixations on vertices that are 

common with neighbouring views, then its considered a less important view and its weighting will 

decrease while the neighbouring views that the fixations where in are more important. This 

functionality stops boring views having an unnaturally high saliency since people must look at 

something while also enhancing views that attract a lot of attention from other views. Once all the 

fixations have been processed and normalized the remap script creates two MATLAB figures for each 

model, one with the model with its normalised saliency map and one with a side by side comparison 

of the model with the saliency map with and without normalisation. Finally, the normalised saliency 

scaled so that the maximum saliency value is 2 and the minimum saliency value is -2. This means all 

saliency values can be easily compared as they are all in the same range. The saliency values are 

then output to a text file. 

Evaluation of existing methods of measuring saliency 

Approach 
This project uses three existing methods of measuring saliency and two primitive methods. The first 

primitive method is a simple centre bias which gives vertices near the origin a higher saliency than 

points further away from the centre. The second primitive method calculates saliency as the 

gaussian curvature at each vertex. These two primitive methods are not likely to be very accurate on 

their own however, they can give the learning methods more flexibility. The three existing methods 

to be used are the three methods talked about in the background section by (Lee, et al., 2005) 

(Mirela & Gotsman, 2008) (Song, et al., 2014). 

To evaluate existing methods of measuring saliency a method of comparing two heatmaps on the 

same mesh is needed. This comparison method can be used to evaluate accuracy by comparing the 

ground truth saliency map generated by the eye tracking experiment and the saliency map output by 

the method to be evaluated. If the two maps are similar, then the method is accurate. A simple 

mean squared error comparison between two saliency maps could provide a basic insight into 

similarity between the two maps, however two very similar saliency maps can have a very high MSE 

if the overall pattern of the map is the same but shifted slightly to one side, then MSE will score high 

as each vertex saliency is different even though the two heatmaps look virtually the same. 



A comparison method that takes some local information from the surrounding vertices is needed to 

provide a more accurate assessment of method accuracy. This project will be using SSIM to assess 

methods accuracy to the ground truth. SSIM uses a centre-surround mechanism as part of its 

evaluation and as such is ideal for comparing saliency maps on meshes. The only issue with using 

SSIM is it is designed for 2D images and not 3D mesh heatmaps and so some work on redefining the 

neighbourhood from a set number of pixels around a pixel to all vertices within a certain distance. 

With SSIM ready to take in salience maps of 3D models a more meaningful evaluation of existing 

methods can be made. To evaluate each method the second half of the selected models are used to 

compare each methods saliency maps with the ground truth, the average of the SSIM scores will 

then be used to compare methods against each other. using the second half of the selected models 

means that when comparing the existing methods to the learnt methods which will use the first half 

of the models as training data both accuracy scores are evaluated across the same models and as 

such is an unbiased comparison. 

Implementation 
This project was designed with modularity in mind, and as such any new methods of measuring 

saliency can be added to the system by putting the source code somewhere accessible and adding a 

new folder under Saliency values that the method will write saliency data to. With a small code 

addition to existing_method_accuracy and the two learning methods a new method can be added to 

the system. With more time this process could be smoothed out further to simply link the code to be 

called and name a folder. 

 

Figure 3 data flow for existing method and evaluating scripts. 



The existing_method_accuracy script takes in a list of method names and for each method on that 

list it will check for the second half of the selected models if a saliency map has already been 

produced by the method and if it has not it calls the method to create one. Once a saliency map has 

been obtained it will call SSIM_mesh_helper which simply loads two saliency maps and then calls 

SSIM_for_3D_Saliency which runs the modified SSIM code which works on 3D meshes. The two 

maps being passed into the mesh helper will be the method being tested and the ground truth data 

from the eye tracking experiment. Once this process has been completed for the second half of the 

selected models each method is assigned the average of its SSIM values across the test set. 

Not all the existing methods were straightforward to use, to 

use Lee et al. method the models first needed to be simplified 

as the method required too much memory otherwise. This 

then means that a saliency mesh is returned that is for a 

simplified mesh. to generate a saliency map for the initial mesh 

the simplified saliency map needs to be ‘patched’ onto the 

larger mesh. to achieve this, I find the closest vertices on the 

initial mesh to each of the vertices on the simplified mesh. 

these vertices are now the centre of each patch. While there 

are still unclaimed vertices each patch claims all unclaimed 

vertices on the border of the patch. Every vertex inside a patch 

is then given the saliency value of the vertex on the simplified 

mesh that started that patch, resulting in a full patched 

saliency map as shown in Figure 4 to the right. 

Modifying SSIM to work on 3D heat maps required a change in 

SSIM’s neighbourhood. When working on 2D images it took a 

window around each pixel, but this is not sufficient for meshes. pixels are always uniformly spaced 

apart and are perfectly uniform in size, neither of these facts are true with vertices. I developed a 

new window for 3D SSIM where the neighbourhood was defined as vertices within a set distance 

from the initial vertex if it can be reached via vertices also within the distance. This neighbourhood is 

very similar in design to the remapping neighbourhood with the only exception being its size. The 

remapping neighbourhood uses approximately 5% of the mesh whereas the SSIM neighbourhood 

uses approximately 2%. Vertices differ from pixels in the area they cover as well so to address this 

rather than just multiplying the salience score by the gaussian distance from the initial vertex each 

score is multiplied by its vertex’s Voronoi area. Which is the area around a vertex that is no closer to 

any other vertex. In a triangular mesh this is very easy to compute. The Voronoi area of a vertex in a 

triangular mesh is one third of the sum of the area of all the faces the vertex is attached to. Using 

the Voronoi area as a scale compensates for the fact that some vertices have more influence than 

others. 

Learning a new method of measuring saliency 

Approach 
There will be two separate learning methods this project will use to produce a more accurate 

method of measuring saliency. Both will train on the first half of the selected models and test on the 

second half. The first method is least squares regression, a straight forward method that for its data 

set minimises the mean squared error of each method supplied to it against the ground truth by 

linearly scaling each method by a weight. These weights can then be applied to each methods 

saliency map of the test set models to produce a saliency map weighted by the learnt model. SSIM 

can then evaluate the accuracy of the weighted method against the ground truth for the test set. 

Figure 4 Example of Patched Lee et al. Saliency method 



The second method is using MATLAB’s feedforward network in the neural network toolbox. As with 

the least square regression method all the ground truth data and the existing method data for the 

first half of the selected models is passed in. the feedforward network will then train on this data 

until it cannot improve anymore. the network will then simulate output for the remaining second 

half of the selected models and SSIM will assess its accuracy to the ground truth. As the feed 

forward network can take a different number of nodes, several different nodes will be tested to see 

what the optimum number of nodes are for this problem. 

Implementation 

 

Figure 5 data flow for the neural_network script 

The neural network being used for this learning method is a feed forward neural network. I decided 

to use a shallow network rather than attempt deep learning with such a large dataset given the time 

frame of the project I felt I would probably get better results working with a shallow network. I 

tested out MATLAB’s newgrnn radial network, but it could only take a small subset of the data due 

to memory constraints. Using random down sampling seemed a little too arbitrary so I opted for 

MATLAB’s feedforwardnet. several different runs of this network will be done to find what the 

optimum number of nodes to get the most accurate output is. The network will be trained on the 

first half of the network and tested on the second half of the network to keep things consistent with 

the other existing method evaluations. 



 

Figure 6 data flow for least square regression learning method 

The least square regression learning method is relatively straight forward. Feed it the dependent 

data being the eye tracking experiment data and the independent data being the method saliency 

maps for the first half of the selected models. Then find the weighting for each method and an 

intercept that minimises the squared error to the eye tracking data. The least_squares_regression 

script then outputs an array of weights with one value corresponding to each method passed in and 

one extra intercept variable. To compute the array of weights a least squares fit is applied to the 

data. To do this all the existing method saliency maps for the first 20 models are loaded in as the 

independent variables and the ground truth for the first 20 models is loaded in as the dependent 

variable. A covariance matrix is made so that each method or ground truth data has a covariance 

value with every other method. Two matrices are made from the covariance matrix. A is all but the 

last column and row of the covariance matrix and C is the last column of the covariance matrix. The 

weights are computed by the following formula 

𝑤𝑒𝑖𝑔ℎ𝑡𝑠 =  𝐴−1 ∗ 𝐶 

The intercept is then calculated as 



𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 = 𝑚𝑒𝑎𝑛(𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡) − 𝑚𝑒𝑎𝑛(𝑖𝑛𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑡) ∗ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠 

Once these calculations are complete the weights array will then be passed to the 

mixed_method_test script which combines each methods saliency map linearly scaled with the 

corresponding weight. The mixed saliency map will then be sent along with the ground truth map to 

SSIM to be evaluated. Just like the existing methods this will be done for each model in the second 

half of the selected models. My biggest concern with this method is that to keep things accurate 

with the comparison model the data must be normalised to -2 to 2 which makes the intercept part 

of the least squares method relatively irrelevant. 

Results and Evaluation 

Eye tracking results 
I used 20 different models as the dataset for this project some models came from the Stanford 

repository and some others came from the AIM@SHAPE-VISIONAIR shape repository. A full list of 

models and where they were acquired can be found in the appendix section of this project. 

Running experiments on the eye tracker for this project was done in two parts. The first half of the 

eye tracking data was collected during the CUROP project and the second half was collected during 

the dissertation period. In the end I managed to get 23 participants to do the experiment. For some 

meshes the saliency map seemed to be very concentrated in one or two areas and yet for some 

other meshes the saliency map was very spread out across the mesh. 

 

Figure 7 Graph showing error convergence of eye tracking data. blue bars represent when a new set of views is recorded. 

To see if my data set was large enough to get reliable results I calculated the mean squared error 

between the saliency map before and after each participants data was added during the remapping 

stage. The resultant graph of the mean squared error for each addition to the saliency map shows 

that the dataset is converging after around 10-15 participants. This means that I had enough 

participants to confidently produce an accurate human saliency map of each model. It is even 

potential as the dataset converged so early that more models could be introduced to increase the 

training sets for the learnt methods. Due to the way the remapping code runs it processes all data 
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from one group of the experiment before moving on to the next. As each group contains certain 

views of a model, once a new group is being processed the error will increase drastically as a whole 

new set of vertices are visible to participants in different groups. The blue bars in Figure 7 Graph 

showing error convergence of eye tracking data. blue bars represent when a new set of views is 

recorded. where these group changes occur. 

   

Figure 8 examples of remapped eye tracking data, reds and yellows are salient areas, greens and blues are non-salient 
areas. from left to right ant, simplified armadillo, bunny and dragon 

Models with obvious facial features drew most of the attention from participants. As shown in 

Figure 8 above, the ant’s saliency map is far more spread out than the other three models that all 

have a very high salience around the face. This result is to be expected however, on models with 

faces very little else is regarded as salient. This could be due to one of two things. The first possibility 

is that as each participant will look at the face at some point but the secondary points they look at 

are not as commonly shared with other participants the saliency values around the face massively 

outweigh any other values. This means that when the saliency map is normalised to -2 to 2 areas 

that are not in the facial region have a negligible salience value. A way to circumvent this would be 

to use a non-linear scaling so that super salient areas don’t drown out the rest of the dataset. The 

second possibility is that people naturally look at the most salient part of a scene first. In the case of 

these models the most salient area might well be the face, but as participants only have 5 seconds to 

view each image they may not have time to look at other slightly less salient areas on the mesh. a 

possible solution for this would be to increase the exposure time of each image and give fixations at 

the beginning of a viewing a higher saliency weight so that the first things viewed are given more 

salience than a point viewed at the end of the viewing time. 

 

Figure 9 comparison of saliency maps before and after normalising views. From left to right happy(before), happy(after), 
bulldog(before) and bulldog(after) 



Normalising views seemed to work quite nicely, salient areas that get a lot of attention from multiple 

different views are enhanced like both the faces of the examples in Figure 9. Views where people’s 

attention was not directed towards the centre of the image had a weaker impact, for example happy 

buddha’s sleeve must have been fixated on from a view that consistently looked at other areas and 

so what is intuitively a boring area of the model is considered less salient as other fixations from that 

view looked elsewhere. 

 

Figure 10 comparison between original and simplified saliency maps. from left to right: simplified bunny, bunny, simplified 
dragon, dragon. 

It seems that there is little to no difference in how people perceive meshes weather they are 

simplified or not. As can be seen above in figure 10 both the original mesh and the simplified mesh 

have very similar saliency maps. there are slight differences in where the minor saliency points are 

like the simplified bunny’s shoulder vs the original bunny’s upper back however I feel that with a 

large enough dataset these minor saliency points would even out and both saliency maps would look 

near identical. This would imply that fine detail does not play a major role in where people look for 

these kinds of meshes. if this fact holds true it could improve run times for methods for measuring 

saliency as they can work on simplified meshes without losing accuracy. 

Overall, I think measuring saliency of 3D models using the eye tracker worked well. Having a better 

idea on detailed meshes of some mid-level saliency rather than one massively salient area would be 

a major improvement on these saliency maps. the biggest downfall is the run time, remapping the 

eye tracking data to the models took an incredibly long time. Most of this run time is down to finding 

the neighbourhood around a vertex, finding 5% of the model every time a fixation is made resulted 

in code that for larger more detailed models took a very long time to run. 

 

Existing method Evaluation 
Due to time constraints and how long running the SSIM for 3D saliency can take for the larger 

models for evaluating existing methods and the learnt methods I will be using 8 models rather than 

the planned 20. The models chosen to be used are kitten, spot, teapot and sheep along with their 

simplified versions. 

 

Figure 11 table of average SSIM values and standard deviation for each method of measuring saliency 



Centre bias performed very poorly however I do not think this is due to people not looking at the 

centre of a model. The only mesh in the test set I had time to run that does not have a face is the 

teapot which is spherical in shape centred on the origin meaning that most of the mesh is a long way 

from the centre. This means the centre bias method has very little influence on this dataset. As all of 

the meshes in this test set are quite smooth the centre surround mechanisms in Lee et al. difference 

of gaussian and spectral processing by Song et al are of less use as there is very little variance in 

surface curvature. Due to this consistent curvature of the limited dataset the Gaussian curvature 

primitive was quite accurate as there are only a few areas where curvature is different, and these 

areas typically are salient as they are the only areas on the mesh that are not a consistent round 

shape. The conformal factor saliency method by Mirela et al. as shown in Figure 12 below the 

conformal method leaves the majority of the mesh with no salience value at all. This will contribute 

to a higher SSIM score as the best part of the ground truth is close to zero salience. The edge areas 

that the conformal factor measures as salient are consistent with the eye tracking data in this case 

however there are a lot of salient points around the base of the spout that the conformal factor does 

not account for. 

 

Figure 12 SSIM comparison between ground truth and conformal factors method by Mirela et al. from left to right: ground 
truth, SSIM index map, conformal factor, this comparison had an SSIM score of 0.1030 

Learnt method Evaluation 
The least squares regression method achieved an average SSIM score of 0.0857 which out-performs 

all but the conformal factor method. The reason for least squares underperforming the conformal 

factor could be because in the training data the conformal factor offered very little accuracy in terms 

of salience. The saliency map produced by leas squares shown in Figure 13 however does to fit the 

general pattern of the ground truth data aside from the lid being marked as salient when virtually no 

one looked at it. I feel with a better scaling function to get the data in the range of -2 to 2 to 

preserve the low salience zones the least squares regression model would be a lot more accurate. 

 
Figure 13 SSIM comparison between ground truth and least squares regression method. from left to right: ground truth 
saliency map, SSIM index map, least squares learnt method saliency map. This comparison had an SSIM score of 0.0346 

The feed forward network, as demonstrated in Figure 14 below produces a saliency map that gives 

high saliency to sharp protrusions on the model and the area around the neck which is probably due 

to the necks gaussian curvature. The method gives very low saliency to flat areas or large protrusions 



like the cow’s legs. Using the most effective number of nodes which was found to be 6, the average 

SSIM score of the feed forward network was 0.1348 which is much better than the primitives and 

the difference of gaussians and spectral processing. It was still not quite on par with the conformal 

factor method, but this may simply be due to the subset of the test data I was able to use is all very 

smooth and the training data was not this smooth, so the network did not learn to make the most of 

the conformal factors method. 

 

Figure 14 SSIM comparison between ground truth and feed forward network. from left to right: ground truth saliency map, 
SSIM index map, feed forward learnt method saliency map. this comparison had an SSIM score of 0.3235 this version of the 
network had 6 hidden nodes 

The graph below shows the average SSIM performance over the test data set for the feed forward 

network trained on the first half of the selected models with different number of nodes to find what 

the optimal number of nodes for this problem is. The feed forward network seemed to overfit the 

data very quickly. There was an improvement from 4 nodes to 6 nodes, so we know that the 

network does not require even fewer nodes. The optimum number of nodes for this problem was 6, 

this network outputs plausible saliency maps that at times can be very competitive (SSIM score of 

0.3235, highest attained score so far) but has a high standard deviation (0.112845) so it is not the 

most reliable method of measuring saliency, but It can predict human saliency very well for some 

models. 
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Future Work 
There are several different directions that I feel this project could make progress towards. The first 

would be to create a simple UI interface to make using the various scripts this project relies on a lot 

simpler for other users. It would also be nice to have the time to run the evaluation tests on the 

remaining 12 models that could not be finished within the timeframe of this project. 

I would be interested to attempt running 2D methods of measuring saliency on each of the 20 

images produced for the eye tracking experiment and then remapping the 2D saliency map onto the 

3D mesh. this would allow for a much broader range of potential methods to add to the learnt 

method. Being able to use 2D methods of measuring saliency would also mean access to object 

recognition methods, for example a method that detects faces. This would prove to be very useful 

for the learning methods as faces have proven to be very salient. 

Conclusions 
This project set out to take a group of 3D models and gather eye tracking data on them and remap 

the eye tracking data onto the 3D models to produce a saliency map on the 3D models. This 

functionality can be slow on large meshes but works well none the less. This project also aimed to 

evaluate existing models of measuring saliency and learn a new method of measuring saliency from 

existing models. existing models have been evaluated and new methods of measuring saliency have 

been developed, unfortunately time ran short and I could not evaluate the existing models and the 

learned methods on the entire test set however some tests were done that showed promising 

results. Perhaps over a larger dataset and with more methods to learn from, a learnt method could 

prove to be undoubtedly more accurate at predicting human saliency. 

Reflection on Learning 
Over both CUROP and this dissertation this project has challenged and intrigued me with several 

difficult and unique problems. Solving the compatibility issues and hardware limitations that came 

with running other people’s research code has improved my ability to find compromises rather than 

just accepting that it wont work. By tackling this problem, I have developed my ability to break down 

a large problem into smaller parts that as a part are simpler to solve and allow for easier 

maintenance in the future. 

Appendices 

List of models 
The following meshes were taken from the Stanford repository found at: 

http://graphics.stanford.edu/data/3Dscanrep/ 

Armadillo 
Bunny  
Dragon 
happy 
 
Head = http://graphics.cs.williams.edu/data/meshes.xml#2 
teapot = http://graphics.cs.williams.edu/data/meshes.xml#2 
 
The following meshes were taken from the SHREC 2011 shape retrieval contest dataset found at: 

http://www.itl.nist.gov/iad/vug/sharp/contest/2011/NonRigid/data.html 



falling 
ant 
 
The following mesh was taken from Keenan’s 3D model repository which can be found at: 

http://www.cs.cmu.edu/~kmcrane/Projects/ModelRepository/ 

Spot 
 
The following meshes were taken from the AIM@SHAPE-VISIONAIR shape repository which can be 

found at: http://visionair.ge.imati.cnr.it/ontologies/shapes 

bulldog model is provided courtesy of VCG-ISTI 
frog model is provided courtesy of Frank_terHaar 
kitten model is provided courtesy of Frank_terHaar 
Red circular box model is provided courtesy of INRIA 
chair model is provided courtesy of IMATI 
cup model is provided courtesy of MPII 
sheep model is provided courtesy of Frank_terHaar 
Ramesses model is provided courtesy of IMATI 
gargoyle model is provided courtesy of VCG-ISTI 
raptor model is provided courtesy of INRIA 
grog model is provided courtesy of VCG-ISTI 
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