
Towards Generating Text-Based Adventure Games
Using A Reverse Planning Problem Approach

Final Report

Author: Thomas Tallis
Supervisor: Dr. Richard Booth

Moderator: Professor David Walker

Module Code: CM3203
Module Title: One Semester Individual Project

Credits Due: 40

1

Table of Contents
1 Introduction...4

1.1 Project Aim..4
1.2 Text-Based Adventure Games..4
1.3 Planning Problems...5
1.4 Running the Code..5

2 Background..6
2.1 Describing Adventure Games with Description Logic..6
2.2 STRIPS..6
2.3 Maze Complexity and Difficulty...7

3 Design and Implementation...8
3.1 Receiving and Interpreting the Inputted Action Sequence..8
3.2 Generating the Initial State..9
3.3 Formatting the Output..10
3.4 Difficulty Measurements...10

3.4.1 Room Difficulty Measurement...11
3.4.2 Item Difficulty Measurement...13

3.5 Increasing the Room-Based Difficulty Measure..13
3.6 Increasing the Item-Based Difficulty Measure..14
3.7 Displaying the Rooms of the World...15

4 Results and Evaluation..16
4.1 Testing the Software..16

4.1.1 The Program Can Generate the Initial State Based on User Input...................................18
4.1.2 The Program Can Increase the Room-Based Difficulty...21
4.1.3 The Program Can Increase the Item-Based Difficulty...21

4.2 Evaluation of Overall Program..23
5 Future Work...24

5.1 Create the Game...24
5.2 Further Development of Item Placement in the Game..24
5.3 More Interactions with NPCs..24
5.4 Show Items in Visual Representation of the World...25

6 Reflection on Learning..26
6.1 Difficulties Overcome in Development...26
6.2 Professional Skills..27

Appendix A...28
References..30

2

Table of Figures
2.1 - An example plan in STRIPS format..6
3.1 - An example action as stored in the code...8
3.2 - Three simple examples of room maps...11
3.3 - A comparison of two maps with the same measured difficulty...12
3.4 - A visualisation of a generated map..15
4.1 - Test case 1..16
4.2 - Test case 2..16
4.3 - Test case 3..16
4.4 - Test case 4..17
4.5 - Test case 5..17
4.6 - Test case 6..17
4.7 - Test case 7a..17
4.8 - Test case 7b..18
4.9 - Test 1, case 1..18
4.10 - Test 1, case 2..19
4.11 - Test 1, case 3..19
4.12 - Test 1, case 4..19
4.13 - Test 1, case 5..20
4.14 - Test 1, case 6..20
4.15 - Test 1, case 7a..20
4.16 - Test 1, case 7b..20
4.17 - Test 2, case 1, before and after adding rooms...21
4.18 - Test 3, case 1, before adding items..22
4.19 - Test 3, case 1, after adding items...22
4.20 - Test 3, case 4, before adding items..22
4.21 - Test 3, case 4, after adding items...23

3

1 Introduction

1.1 Project Aim
The aim of this project is to build the structure of a text-based adventure world, based on a

basic game idea inputted by the user, and then develop the world into something more difficult to
solve, than the original idea. This aim will be achieved by implementing software that should take,
as input, a file detailing the goal state of the game – e.g. the player should end at this location with
this item – and any number of sequences of actions that take the player from an unspecified initial
state of the game, to the described goal. The program will then generate the initial state of the game,
according to the inputted action sequences, and add to the initial state in an attempt to obscure the
path to the goal. The initial state, along with the allowable actions and goal state, will then be saved
to another file. The structure chosen to record a generated environment is that of a planning
problem. This format will allow easy confirmation that the generated world can be solved.

1.2 Text-Based Adventure Games
A text-based adventure game in the context of this report is a game where the player must

navigate a world, often interacting with items and non-player characters (NPCs), to reach a
predefined goal. This goal may be to reach a particular room in the world, or to obtain a particular
item, etc.. The player interacts with the game, via a console, by inputting commands that tell the
program what the player wants the controlled person to do. The list of commands depends on the
game being played, but every game will have a command to move to another room, usually defined
by moving in a compass direction, e.g. “go south” or “move south”. Other commands may involve
picking up items or talking to NPCs and some games will include non-functional commands like
checking the player’s inventory or looking around the current location.

Examples of existing text-based adventure games include: “Colossal Cave Adventure” [3],
the first ever text adventure game, where the aim is to gain points by exploring a cave to find
treasures and escaping the cave afterwards; “Adventureland” [4], where the aim is to find thirteen
items hidden in the world by exploring rooms and solving puzzles; and “Zork” [5], where the player
controls an adventurer exploring the world with no explicit goal. All three games are controlled
using the standard commands of “go” followed by a compass direction and have a narrator telling
the player how their actions have affected the game through text printed to the console.

A generated text-based adventure world from this project will have the basic move
commands and take item commands that are often seen in other games. Other commands will
include unlocking doors with a key and lighting dark rooms with a torch. Non-functional commands
will not appear in this project as they do not change the state of the game, instead they only provide
information to the player. A full list of commands, from here on referred to as actions, can be found
in Appendix A at the end of this report.

4

1.3 Planning Problems
A planning problem is a method of formatting information about a problem in a way that

makes it possible for a computer to solve the problem. This formatting is done by defining three
distinct pieces of information, described below. The basic data type required for all three pieces of
information is a propositional variable, i.e. a variable whose value is either true or false. This data
type allows a set of what is true at a particular point in the plan, known as a state, to be created.

The first piece of information defined, using propositional variables, describes the initial
state of the plan. This state contains information as to what is true at the start of the problem, and
what is false. The second piece of information defined describes the goal state of the plan, again in
terms of what must be true, and what must be false, by the end of the plan. The third piece of
information contains any actions which allow the planner to move from one state to another. For
this transition, two sets are defined for each action. These are the preconditions and the
postconditions. The preconditions define the values of any variables that must be fulfilled, in the
current state, for the action to take place. The postconditions define what value will be assigned to
any variables that change in the next state.

As an example, an action allowing a player to move from one room to an adjacent room
must have the preconditions that the two rooms are adjacent, and that the player is in the room from
which they will move. The postconditions of such an action will include the player being in the
adjacent room, and the player no longer being in the initial room.

A plan, therefore, is a sequence of actions that, when followed starting with the initial state,
arrives at the goal state.

What this project aims to do is reverse the process of finding the action sequence that travels
from a known initial state to a known goal state. Instead, the software will take a known goal state
and any number of action sequences, and return the initial state from which those sequences arrive
at the goal.

1.4 Running the Code
To run the produced code, the user must have Python 3 [9] installed on their machine as well

as Pygame [10] in their Python installation to be able to create the visualisation of a generated
world. The program the user must run is named “generate_world.py” and, to run, it must be passed
two arguments on the command line of the file names referring to the input file the user has created,

and the name of a file that the generated world will be saved to. An example command is “python
generate_world.py input.txt output.txt”.

In this example, the code will get the goal and action sequence(s) from a file named
“input.txt” and save the full plan that it generates to a file named “output.txt”. During runtime the
program will print out a list describing the initial state of the world it generated, display a window
showing a visual representation of the generate world, and save a full plan to the file named in the
second argument of the command.

5

2 Background

2.1 Describing Adventure Games with Description Logic
In the paper “Building a Text Adventure on Description Logic” [2], the authors use

description logic to improve natural language parsing in text-based adventure games. The basic
concepts of such a model are defined using propositional variables and actions are defined as
STRIPS actions, which are described in more detail in the next section.

This attempt to resolve natural language commands by modelling actions as STRIPS actions
is close to the attempt in this project to represent a game world using a planning problem
definitions. Furthermore, an attempt to extend this project by producing a playable game from the
generated world could utilise such a model because the data structures are implemented in the same
way.

2.2 STRIPS
The Stanford Research Institute Problem Solver (STRIPS) can be used to solve planning

problems and also provides a syntax to describe a specific planning problem. More information
about the original definitions of STRIPS can be found in [8], from here on this report will discuss
STRIPS with regard to an implementation in Python, that can be found on github [1], which forms
the basis for the syntax that will be used to create the software. A basic instance of this syntax can
be seen in figure 2.1.

As can be seen in the figure, a STRIPS instance in this implementation has three distinct
sections. The first section describes all the statements that are true at the start of the plan. The
second section describes which statements must be true in order to reach the goal state, but does not
have to contain all statements that will be true once the goal state is reached. The final state of this
plan, for example, will also contain NextTo(Kitchen,Office) and NextTo(Office,Kitchen), however
these statements are not included in the second section, as they are not part of the goal. The third
section contains all the actions that may be taken by the planner. In this example the planner can
only take one action, and that is to move between rooms. As can be seen in the figure above, an
action is defined in such a way that the action can be generalised to more than one set of

6

Figure 2.1 - An example plan in STRIPS format

propositional variables. In the figure, the move action is specified with two arguments – from and to
– that allow the action to take in any pair of rooms rather than just providing the move action
between two specific rooms.

A state in STRIPS planning differs slightly from a state in other planning methods as it only
contains those variables that are currently true. Any variables that do not appear in the state are
considered false. This is not the case in an action however because it is often necessary to say that a
variable does not exist in the state – i.e. the variable is false - , or that a variable will become false,
and therefore be deleted from the state, once the action has taken place. Therefore, a way to
represent that a variable must be false or will become false is required. This representation is
usually achieved by preceding the variable with either the word ‘not’ or the negation sign used in
propositional logic (¬). In the example above any variable preceded by an exclamation mark is
considered false.

2.3 Maze Complexity and Difficulty
The aim of the project inherently requires some measure of how difficult it is to solve a

particular game. Research on the topic of how difficult mazes are to solve seemed an appropriate
place to start as the set of rooms in the game can be considered a maze.

The research revealed a paper on this topic [6] and a simplified version of the same
calculations applied to rectangular mazes [7]. Of the two options, the simplified version seemed
more relevant initially as it discussed only rectangular mazes, which is what the typical adventure
game world looks like in practice. Further inspection of the paper, however, revealed that the
particular measure it discussed related to the complexity of a maze, defined in terms of the lengths
of hallways in a maze. This definition of complexity, however, is not what is required of the
measure in this project, because it does not reflect the difficulty to solve the maze, only the
difficulty of describing the maze. An example given in the paper in figure 6 shows three mazes that
have increasingly higher complexity than the previous one, due to an increase in the length of the
hallway, but each only has one path through the maze, and is therefore just as easy to solve. The
original paper, on the topic of difficulty and complexity of mazes, appears more useful as it
discusses a measure of difficulty that is more applicable to the requirements of the project.
However, an implementation of the required formula to calculate the difficulty rating would be
time-consuming to achieve, and a simpler method would allow for a reasonable estimate of what
would be calculated while allowing more time to be spent elsewhere on the code.

7

3 Design and Implementation
Designing the software required some way of representing the basic data types that would be

used throughout the runtime of the program. The representation that has been chosen is the same as
the representation used in the Python implementation of a STRIPS planner [1]. This compatibility
allows the use of the STRIPS planner to verify the generated plan is solvable. Within the program, a
propositional variable is stored as a tuple of information. The first item in the tuple is the identifier
of the variable, e.g. “At”. This is followed by the items that come inside of the brackets in the
standard representation that can be seen in figure 2.1. For example, the propositional variable
At(Kitchen) would be stored in the program as (“At”, “Kitchen”). To represent a variable as false,
that variable’s identifier is preceded by an exclamation mark, e.g. (“!At”, “Kitchen”).

From this definition of a propositional variable, it is possible to implement a state as a set of
tuples representing all the variables that are true at that point in time. An action in the code is
represented as three tuples. The first defines the name of the action and any arguments that are
passed to the action to generalise the input. The second contains all the tuples of propositional
variables that make up the preconditions of the action, with reference to the arguments of the action
where necessary. The third defines the postconditions of the action in the same way as the
preconditions are defined. An example of theses tuples can be seen in figure 3.1, below.

3.1 Receiving and Interpreting the Inputted Action Sequence
The first step in creating the software was to build a function that could interpret the input

from the user. To make it possible for the program to interpret the input from the user, a set of rules
was created to define how the text file would be formatted. The rules are as follows:

• The first line in the text file is the goal state of the game in the following format:

• It is represented as a list of variables separated by a comma and a space

• each variable is represented as an identifier then, without spaces, a comma separated list

of inputs to the variable enclosed by brackets touching the identifier.

• Example:

• At(Library), Has(Key)

8

Figure 3.1 - An example action as stored in the code

• Each following line in the text file is an action sequence that ends at the goal state and must

be of the same format as the goal state, except each item is an action and not a variable.

• Example:

• Take(Key), Unlock(Kitchen,Library), Move(Kitchen,Library)

3.2 Generating the Initial State
To generate the initial state, from the inputted goal and action sequence(s), a reverse

planning problem approach is used. Specifically, the algorithm takes in the sequence(s) of actions
and the goal state, and reverses the process to find the initial state that arrives at the goal state when
the sequence of actions is taken. This reversal is achieved by performing the sequence of actions in
reverse order, with the preconditions and postconditions swapped, i.e. for the last action in the
original sequence (which will be applied first) to be taken, all the postconditions must exist in the
goal state and, after the action is taken, all the preconditions will be added to make the next state.
This process is repeated on the current state until all the actions have been applied and the initial
state is produced.

To find the associated preconditions and postconditions of an action in the sequence, the
program performs a dictionary lookup using the action name as the key. Any variable propositions
that exist in the action are then substituted for the actual value that has been passed with that
variable name in the action sequence. For example, the action “Take()” requires the name of the
item being taken and the room from which the item is being taken. The preconditions of Take in the
program are: “(At,Room), (In,Item,Room),(!Has,Item)” and, in generating the initial state, “Item”
and “Room” are replaced with whatever item is being picked up and from where, e.g. a key from
the kitchen.

The post conditions of the next applicable action can then be used to check that the action
took place by comparing the postconditions of an action to the current state. If any postconditions in
the action conflict with what is in the current state, the action sequence is deemed invalid and a
SequenceError is thrown. These conflicts are: the postconditions state that the player is currently in
a different location to where the player is in the state; and the postconditions contain a false
propositional variable that is currently true in the state.

Once the program confirms that the action took place, it adds the preconditions of the action
to the current state. This is done by adding any true propositional variables in the preconditions to
the state, ignoring any duplicates, and removing any true propositional variables in the state that are
false in the preconditions.

In some cases, the user will want to include multiple paths that lead to the same goal. The
process that takes place when the user inputs multiple sequences is to apply each action sequence
individually to a copy of the original goal state, using the same method as for one action sequence.
The resulting initial states are then combined together, ignoring any duplicate propositional

9

variables, to create the initial state from which all sequences lead to the goal state. The states can be
combined in this way without any conflicting variables because, for all sequences to lead to the goal
state, there must be no conflicts in the way they describe the world. For example, one sequence may
say that the library is connected to the kitchen, and another may say that the library is connected to
the office, but they will not say that they are connected in the same direction as, if they did, this
would become a conflict and both sequences would not be able to reach the goal state. If any
conflicts do arise because of an error in one of the action sequences, the program will throw a
SequenceMergeError with some text describing why the error was thrown. If the example of two
rooms connected in the same direction, or a related conflict of the same room connected in the same
direction to two different rooms does occur, the program will throw an error stating “Invalid grid
structure of the rooms”. This error statement will also be printed if two sequences follow a path
from the same room in different directions and reach the same endpoint. As an example of when
this final case occurs, if one action sequence says that by going north twice, from the start location,
the player arrives at the goal, and another says that by east twice, from the start location, the player
arrives at the goal, this error will be accompanied by the text: “Invalid grid structure of the rooms.”.
The final time an error will be thrown is if at least one of the action sequences has a starting
location that differs from a starting location in another action sequence. In this case, the
accompanying text will say “at least two action sequences start in different places”.

3.3 Formatting the Output
After the initial state is generated, it needs to be saved to file in a format that could be used,

in future development, to build the game. The format chosen for saving the information was the
same as what is required by the Python STRIPS program [1]. This format was chosen because it
could then be immediately inputted into the STRIPS program to test the generated initial state had a
valid path to the goal state.

The initial state, goal state and set of used actions need to be outputted to the file in a
particular format. For compatibility with the STRIPS program, the initial and goal states must be
outputted on one line each, preceded by the words “initial state:” and “goal state:” respectively.
Each variable is comma separated with no whitespace and the items inside the variables are also
comma separated with no whitespace.

The actions are outputted on 3 lines each, separated by a blank line, with each action having
a line for the identifier and any variable item references; a line for all the preconditions of the
action, preceded by the word “preconditions:”; and a line for all the postconditions of the action,
preceded by the word “postconditions:”.

An example of a simple world represented as the outputted planning problem can be seen
found above in section 2.2, figure 2.1.

3.4 Difficulty Measurements
The difficulty measurement of the generated world can be split into two categories: a

measurement of the difficulty based on the arrangement of the rooms in the world; and a

10

measurement of the difficulty based on the number of items in the world. This distinction was made
because the program will increase the difficulty associated with the rooms and the difficulty
associated with the items separately, so a separate measure of difficulty is required for the program
to know when to stop in each case. To get an overall difficulty measure, the two measurements are
added together.

3.4.1 Room Difficulty Measurement

To confirm that any measurement devised actually represented the difficulty of a particular
set of rooms, three basic room maps were created that could be ranked, without using the difficulty
measure, as to which would be more difficult to solve. This ranking could then be compared to the
scores that the measurement assigns to each map to decide if the measurement works in practice.
The below figure shows the three examples with difficulty increasing from left to right.

The red lines on the maps follow unique paths from the start room to either dead ends or the
goal room. With these examples ranked, it should become clear that an increase in the number of
paths, leads to an increase in the difficulty measure of a map. This relationship occurs because a
greater number of paths in the map means that there are more decisions that must be made to find a
path that leads to the solution. An increase in the length of a path, without increasing the number of
paths, should not, therefore, increase the difficulty measure. As an example, adding a room between
the start and the goal (with no additional exits) in the first example in figure 3.2 would not increase
the number of paths, and thus does not increase the difficulty associated with reaching the goal.

While counting the paths of the example maps is trivial enough, when a map becomes
sufficiently complex, an algorithm for counting the number of paths becomes infeasible to
implement within a reasonable time limit. Therefore, a simpler measure must be found that

11

Figure 3.2 - Three simple examples of room maps

emulates a count of the number of paths. An approach to this method could be based on the number
of neighbours of each room in the world. This approach should approximate the number of paths
because each neighbour of a room should increase the number of paths.

A formula can now be devised for the difficulty measure, based on the number of neighbours
of each room in the world. An initial idea proposed that it should simply be the sum of the number

of neighbours of each room. This can be seen in the below formula where Dr represents the

difficulty of the room-based component, and ni represents the number of neighbours at a given

room i.

 Dr = ∑(ni)

This idea, however, would result in a greater value when a path is lengthened, by adding a
room to either the middle or the end of an existing path, without creating a new path. With this in
mind a new formula was created that ignores any room with two or fewer neighbours.

Dr = n1 + ∑(ni - 2)

In this approach, the first term (n1) is the number of neighbours of the start room. The

second term is a sum of all the remaining room’s number of neighbours with a reduction of two for
each count, with the caveat that any negative terms in the formula become 0 to avoid reducing the
difficulty measure when a dead-end is added. This formula more accurately describes the difficulty
of solving a particular arrangement of rooms as it will count the, and gives the desired ranking for
the examples in figure 3.3. The actual values for the difficulty measure of the examples are, from
left to right, 1, 2 and 3. These values align with the number of paths for each of the examples, and
the formula should predict the number of paths from the start room to a dead end or goal room for
any map that has a single, unique path to each dead end or the goal room. However, a map that has
more than one unique path leading to a dead end will have a higher path count than the measured
difficulty value. This is illustrated in the figure below where the map on the left, that has a single
unique path to each dead end, has 4 unique paths and a measured difficulty value of 4. Where as,
the map on the right, that has multiple paths leading to the goal room , still has a difficulty measure
of 4 but a path count of 5.

12

Figure 3.3 – A comparison of two maps with the same measured difficulty

3.4.2 Item Difficulty Measurement

Quantifying the difficulty associated with the items in the world was simpler than for the
rooms. It was based on the number of items in the world. Another addition to this measure was a
count of anything that the items would allow the player to pass, from here on referred to as a
blockage. The current blockages in the world are: locked doors that can be unlocked with a key;
hidden passages that can be revealed by talking to an NPC; and dark rooms that can be lit by a
torch.

An initial approach to this measurement was to total the number of items and their

associated blockages, as shown by the formula below where Di represents the item component of

the difficulty measure, ni represents the number of items in the world, and nb represents the number

of blockages in the world.

Di = ni + nb

This total provides a rough estimate of how hard solving a world would be as it should be
based on the number of puzzles that need to be solved. However, on further consideration, the
measure was changed to be based on the number of blockages only, given that the actual item
should not be considered part of the difficulty because any item found by the player while travelling
around the rooms would be immediately picked up. Therefore, finding the item is only difficult
because of the blockage it unlocks not because of the item itself.

Therefore, the final measurement used was just to total the number of blockages in the
world, shown below.

Di = nb

This works as the greater the number of blockages in the world, the higher the difficulty
associated with solving the world, as the solution is obscured by the need to find the items for the
blockages.

3.5 Increasing the Room-Based Difficulty Measure
The next algorithm to be implemented was one that would increase the difficulty of the

original initial state by adding rooms that would neighbour the existing rooms. The first version of
this algorithm was implemented in such a way that any room could become connected to any other
room, provided that neither of the two rooms that were to become connected did not already have
four neighbours. This method was initially acceptable because it was quick to implement and served
the purpose of increasing the difficulty. The main disadvantage of this implementation, however,
was a difficulty in accurately producing a visual representation of the game’s map. Such a view was
implemented later on to provide a clearer overview of how the rooms connected to each other. This
implementation also meant that moving in a compass direction, as most previous text-based
adventure games implement, becomes meaningless as even though a player moves east from a
room, they may end up west of the room.

13

To take into account these considerations, a redesign of the method for connecting rooms
together was performed. This new method maps out the rooms in a grid structure, maintaining that
each room had at most four neighbours and that a new room would not join two rooms that were
separated by more than one block in the grid.

Adding extra rooms required a way of generating a new room name that was guaranteed to
be unique. This was achieved by calling the new room “Room” followed by a number that was
higher than any room added previously. As an example, the first room to be added would most
likely be “Room1”. Ensuring that the room number was higher required looking through all the
room names for any that were formatted the same way – i.e. “Room” followed by a number – and
work out which was the highest number, then increment it. This search was achieved with a regular

expression - ^Room[1-9]{1}[0-9]*$ - that would separate all the rooms of the required format

from the rooms with a different name format. Once the next available number is found, it is stored
in a variable and incremented every time a new room is added.

Once generating a new room name was achieved, the problem of selecting a room’s
neighbours could be addressed. In the first implementation this selection only required randomly
selecting one to four rooms from a list of rooms that did not currently have four neighbours. In the
later edition of the algorithm, a new room would be added to a position in the grid, such that it was
next to at least one existing room, and then connected to neighbours by which it was surrounded.
This design required some way of keeping track of where a room was in the grid, which could be
achieved with a coordinate system. This system was implemented by assigning the room in which
the player would start the coordinate (0,0) and then all rooms after would be assigned a coordinate
based on the direction of their attachment to a room that had already been given a coordinate. This
step also required redefining a pair of neighbouring rooms to include the direction the player would
have to take to move from the first room to the second. For example, the original implementation
might define a pair of neighbouring rooms as NextTo(“Office”,“Library”), while in the later edition
of the algorithm this definition would be NextTo(“Office”, “Library”, “east”), specifying that to go
from the office to the library, the player must go east.

3.6 Increasing the Item-Based Difficulty Measure

The difficulty of solving the game could also be increased by adding more blockages into
the game for the player to get around by finding the required item. Adding blockages has been
achieved by implementing a function that locks a certain number of doors depending on a variable
passed to the function. There is also a similar function that makes a certain number of rooms dark
based on a variable. However, these two functions only work if the player already has the associated
item to unblock the blockage. This limitation is because there is no implementation to ensure that, if
a new item were to be added alongside an associated blockage, the blockage does not block the
player from reaching the item. The current implementation means that, even though the measured
difficulty of the world in terms of items increases, the actual difficulty to solve the game does not
increase.

14

The locking doors function is implemented to take in a variable percentage that it uses to
determine how many of the unlocked doors will become locked. This number of rooms is calculated
based on the “NextTo()” propositional variables in the initial state. The function then randomly
selects that number of unlocked doors from the list of “NextTo()” variables and then adds to the
state a “Lock()” proposition for each chosen door with the rooms from the “NextTo()” as
arguments.

3.7 Displaying the Rooms of the World
Adding a grid structure to the world to allow for better placement of new rooms also opened

the possibility of easily creating a display of what the world looked like, which would make it
simpler for a user of the program to visualise where the rooms were in the generated world.

A visualisation was achieved by using the coordinate system which was introduced in
section 3.5. From there, a grid could be generated by finding the furthest x and y values from the
origin. Then, a room could be mapped to its section in the grid by translating the coordinate to a
coordinate of the screen. To indicate which rooms were connected to each other, a line was drawn
through the grid-lines between the neighbours. The final step was to black out any section in the
grid in which there was no room. The below figure shows an example of a generated world
represented in this way.

15

Figure 3.4 - A visualisation of a generated map

4 Results and Evaluation

4.1 Testing the Software
To test that the program passes several requirements, inputs were created that would test all

cases in each requirement.

Case 1: Basic input

This case is the most basic, in which the input is a simple goal state, which requires the
player to be at a location, and a single action sequence moving from room to room with no item
requirements. This case will be used in each test to ensure that the program is able to deal with the
most basic requirement of the project.

Case 2: Input contains multiple action sequences

In this case the input contains two action sequences that lead to the same goal state as in the
first case. Neither action sequence requires an item. This case will test the programs ability to
combine two initial states into one, and should pass without any errors due to conflicts in the
sequences being thrown.

Case 3: The action sequence requires an item the player does not hold

In this case the input contains a single action sequence that leads to the same basic goal
state. It differs from the previous cases by requiring a door to be unlocked to reach the goal state.
The key for the door is not in the player’s inventory. This case will test the actions that allow the
player to pick an item up and unlock a door.

Case 4: The action sequence requires an item that the player already holds

16

Figure 4.1 - Test case 1

Figure 4.2 - Test case 2

Figure 4.3 - Test case 3

In this case the input is identical to case 3 except the key is now already in the player’s
inventory. This case will test the program’s ability to be able to deal with the player not needing to
pick up an item. It will also be used to test the item-based component of the difficulty measure.

Case 5: The goal state of the plan is to have an item

In this case the goal state is modified such that the player is no longer required to be in a
certain location, but to have a specific item. This will test whether the program is capable of
backtracking through the action sequence, without initially knowing where the player is located.

Case 6: Single invalid action sequence

The aim of this case is to test that the program can recognise when the input is invalid. In
this case, the goal will be the same as case 1, but the action sequence will not lead to the goal. When
run this input should throw an “invalid action sequence.” error.

Case 7: Input contains multiple action sequences that are invalid

The aim of this case is to test that the program can recognise when the combination of
multiple action sequences is invalid. It is split into two parts to test the two situations under which
errors are thrown. Both situations contain two action sequences that, when on their own, would be
valid sequences, but when they are together are invalid.

In case 7a, the input is invalid because each sequence describes a path from the start location
that leads in a different direction to the other, but both paths reach the same location. When run, this
input should throw an “Invalid grid structure.” error.

17

Figure 4.4 - Test case 4

Figure 4.5 - Test case 5

Figure 4.6 - Test case 6

Figure 4.7 - Test case 7a

In case 7b, the input is invalid because the two action sequences start in a different
location.When run, this input should throw a SequenceMergeError which states “At least two
sequences start in different locations."

4.1.1 The Program Can Generate the Initial State Based on User Input

This test will be performed on all the test cases and will ensure that the program can take in
a variety of inputs and still produce the initial state that leads to the goal state defined by the user.
This test will also confirm, where possible, that the plan outputted by the program can be solved
using the Python implementation of STRIPS [1]. This should prove that the planning problem that
is generated by the program is valid and that the sequence required to reach the goal state is the
same as the sequence given by the user.

As can be seen in the below screenshots, all cases performed as expected. Cases 1 through 5
all produced an initial state that matches the information provided in it’s input. They also all
produce valid plans that are solvable using at least one of the given action sequences. Cases 6, 7a
and 7b all failed to produce a plan and threw the expected errors. Therefore, all tests were passed,
shoing tha the program can generate the initial state based on user input, or print a relevant message
if there is an error.

Case 1

18

Figure 4.8 - Test case 7b

Figure 4.9 - Test 1, case 1

Case 2

Case 3

Case 4

19

Figure 4.10 - Test 1, case 2

Figure 4.11 - Test 1, case 3

Figure 4.12 - Test 1, case 4

Case 5

Case 6

Case 7a

Case 7b

20

Figure 4.13 - Test 1, case 5

Figure 4.14 - Test 1, case 6

Figure 4.15 - Test 1, case 7a

Figure 4.16 - Test 1, case 7b

4.1.2 The Program Can Increase the Room-Based Difficulty

In this test, the only case that will be used is case 1 because, past the point of generating the
initial state of the input, the program does not take into account any differences in the goal state or
sequences and as such, proving this algorithm works for one case is sufficient to show it works for
all cases.

The figures below show a contrast between what the map looks like without adding rooms,
and what happens when rooms are added. As can be seen in the figures, when the algorithm is
applied, it does add more rooms to the map and connects the added rooms to adjacent rooms. This
in turn raises the rooms component of the difficulty measure from 1, in the first figure, to 10 in the
second figure.

Case 1

4.1.3 The Program Can Increase the Item-Based Difficulty

This final test will use cases 1 and 4 to show two possibilities of the algorithm that increases
the item component of the difficulty measure. The first possibility is that no change occurs to a case
where no items are held by the player at the start. The second possibility is that, in a case where the
player holds a key, a function will be used that will lock a percentage of the not locked doors.

In both cases, the world will have rooms added first and then the program will attempt to
increase the item-based difficulty. As can be seen in the images below for case 1, apart from a slight
re-ordering of the initial generated propositional variables between the two figures as a result of
running the program twice, the only change in the initial state output is the increase in the number
of “NextTo” propositions that means the room-adding algorithm has worked. This means that, as
expected, the algorithm has failed to add any blockages to the world. This failure is because the
player does not hold the item required to pass the blockage. In the set of figures relating to case 4, it

21

Figure 4.17 – Test 2, case 1, before and after adding rooms respectively

can be seen that the algorithm has succeeded in adding locks to the doors. This addition is shown by
the propositional variables found at the end of the state that define there are locks between some of
the doors, and this is down to the fact that the player already holds the key.

Case 1

Case 4

22

Figure 4.18 - Test 3, case 1, before adding items

Figure 4.19 - Test 3, case 1, after adding items

Figure 4.20 - Test 3, case 4, before adding items

4.2 Evaluation of Overall Program
As an overview of the total program, most of the requirements that the project aimed to

achieve have been implemented and, as shown by the tests, perform as expected over a range of
possible inputs. These successes include the program being able to generate the correct initial state
based on a sequence of action and a goal state given by the input, as well as being able to save this
in a valid format that can be tested by the STRIPS program [1] and also used in future work to
create a playable version of the game.

A requirement that has not been fully met is the one to increase the difficulty to solve the
game based on items and blockages in the world. While there are functions that have been
implemented that successfully add locked doors and dark rooms to the map, these functions only get
called if the player already has the required item in their hand. This means that the difficulty does
not increase for cases where the player is not holding anything. As well as this, while the theoretical
difficult measure does increase for cases where the requirement is met, the actual difficulty for the
player to reach the goal state does not increase as they already have the item required to get past the
blockage.

An issue also arises with the limitation that the inputted action sequence should remain
unchanged with respect to adding rooms in the middle of the path. This issue is that the actual
difficulty for the player to reach the goal state will depend heavily on the initial inputted action
sequence. For example, a sequence that requires two moves to reach the goal from the start will be
easy to solve regardless of the number of rooms that are added to the world, because there will
always be the two move route to the goal. In contrast, if the input already has multiple locked doors
and dark rooms already in the world as well as a long chain of rooms that separate the start location
from the goal location, the final output of the program will be significantly harder to solve, even if
the final measured difficulties are equal to the first example.

23

Figure 4.21 - Test 3, case 4, after adding items

5 Future Work
The nature of this project allows for further development of the software that goes beyond

the scope of the project. In this section, additions to the existing code are discussed, along with any
issues that may arise in the implementation of such an addition.

5.1 Create the Game
An additional piece of software could be developed that would take an adventure game,

saved in the form of a planning problem, and allow a user to explore the world and play the game.
The planning problem syntax would be a good start for creating the playable game, as the state
already contains the knowledge the game needs about the world. The interaction with the user,
however, would require a parser that would allow the user to enter a command that the program
would be able to interpret and then use to update the state accordingly.

5.2 Further Development of Item Placement in the Game
Current implementation of increasing the item-based difficulty measure only adds blockages

to the world, and blockages are only added if the item that is required to pass the blockage is
already in the player’s inventory or in the starting room of the world. Algorithms could be
developed that would allow new items to be placed into the world. For example, a world with no
locked doors and no key could have a key placed into the world when the locked doors are added.
However, as discussed in section 3.6, this new implementation could result in adding items that
cannot be reached by the player because their associated blockage blocks them. Therefore, this
feature would require a way of checking to make sure an item is not placed behind the barrier that
requires the item in order to pass through, for example, a key must be accessible before the door
that it unlocks.

In addition, any locked doors in the world are currently opened by the same key, which,
while easier to implement, means that adding locked doors behind existing locked doors will not
increase the difficulty of reaching the goal as the player must already have the key, to unlock the
first door, in order to reach the second door. This issue could be rectified by introducing a multiple
key system in which each locked door requires a specific key. This system would be implemented
by passing a new argument to the “Unlock()” action that specifies which key is required to open the
lock. Because of the current implementation of adding locked doors to the game to increase the
item-based difficulty measure, each locked door added in this process would still only be unlocked
by a key that the player is holding, but this could be extended such that the player is holding
multiple keys to allow for each lock to require a different key.

5.3 More Interactions with NPCs
Currently, the only interaction that can take place with an NPC is to reveal a hidden path

between two rooms. An addition to the existing program could be to implement more interactions
with an NPC.

24

Interactions could include a way of acquiring an item from an NPC by buying it or trading
the item for something the player finds in the world. This would be fairly simple to implement as it
would just require an action to buy items from an NPC or give items to an NPC that would mostly
utilise the already defined propositional variable. The only new variable that would be introduced is
one to describe that an NPC has an item. This could be done by modifying the current “has(item)”
variable to include an argument to say who has the item – i.e. “has(player,item)” or
“has(npc1,item)”.

Another interaction could allow an NPC to reveal hints or information about the world that
would tell the player what their goal is or how to get past a particular blockage, for example the
goal might be to give a particular item to the NPC and by talking to them the player finds out what
item they must retrieve. This would be difficult to implement however as the hint will often be a
text-based clue that has no effect on the world state and there is no way to describe such
information in terms of an action of propositional variables. If the program were able to create the
game though, a hint action could be implemented that gives the name under which a hint is stored in
a separate data structure, allowing the program to do a lookup and display the hint on the screen.

5.4 Show Items in Visual Representation of the World
A further improvement to the visualisation of the world could be to include the locations of

items and NPCs on the map. More details could also be added to represent the blockages, such as
locked doors and hidden passages. These additions would allow the user of the program to get a
clearer idea of what the world looks like as it would give a complete representation of everything in
the world, not just the connections between rooms.

25

6 Reflection on Learning

6.1 Difficulties Overcome in Development
Throughout the development process certain parts of the software were more difficult to

implement that I had expected when planning how my time would be spent. These issues often
came from a bug in the code that I hadn’t anticipated, but which I found when testing the code.

For example conflicts arising when multiple initial states were being combined were not
caught until I created some test cases and they outputted results different to what I expected. When
initially designing the code, I made an assumption that no conflicts could arise when merging the
action sequences because the input would not contain conflicts. However, I soon realised that this
would not be the case most of the time unless the creator of the input gave specific thought when
making their action sequences. This first arose when I created a test case in which two action
sequences tried to reach the goal by going in different directions. I noticed that this was a conflict
because the visualisation of such a world was wrong and therefore wrote some code that would
throw an exception if any conflict in the action sequences would cause an error in the grid of the
world.

In addition this was also the first time I had defined my own exception in Python that would
allow me to better describe the error that had been caught. Learning how to do this cost time that
could have been spent catching other bugs or implementing some of the future work, but it was
necessary to learn and will help me in future projects in a similar situation.

Another difficulty I overcame was that of trying to change the move action to moving in a
compass direction as opposed to just moving between two rooms. This change required some way
of making the layout of rooms into a grid-like structure that would result in correct placement of
rooms and not just allowing any room to connect to any other room regardless of location. It also
meant that my previous implementation of adding rooms to the world to increase the difficulty had
to be changed as up to that point, a room could be added that connect any two rooms in the world.
To change this code I had to create a way of mapping the set of rooms in a world to a coordinate
system that would allow me to add a room to a specific coordinate and instantly find any adjacent
rooms that could become neighbours. This extra implementation cost time that I had allocated to
increasing the item-based component of the difficulty measure, which would have benefitted
otherwise. It did however mean that the worlds the program generated would make more sense to
traverse and also allowed for the conventional compass-point movement that is implemented in
most games of the same genre.

6.2 Professional Skills
Before this project, I had not done such a large-scale individual software development. I,

therefore, came to the realisation that there was a lot more work that I personally needed to do
compared with group projects I have previously been a part of that were of a similar time-frame.
This realisation gave me an understanding of how important creating a work plan at the start of

26

development is in order to make sure that the project is completed in time and that your time is
spread evenly throughout the process. I believe that this idea of setting out a work plan will help to
achieve all the aims of future individual projects of the same scale.

I have also never produced as much code as I did in this project, and this has allowed me to
see the importance of organising the code in a way that makes it easy to find specific functions or
objects that need to be updated or debugged. Furthermore, organised code is imperative in being
able to communicate effectively to another person how the code works and which functions perform
what jobs. Both of these issues meant that time I could have spent developing my code was actually
spent re-organising functions to make finding a particular function easier.

Also attributable to the amount of code being written, I increased my appreciation of the
usefulness of generalised functions that can be used at multiple points in the program. They save
time in creating the process, rather than repeating similar lines of code, and are more efficient when
changes need to be made. They also allow the code to be understood and debugged more easily.

27

Appendix A
A full list of actions and their associated preconditions and postconditions:

MoveNorth(From,To)

Preconditions: At(From), !At(To), NextTo(From,To,north), NextTo(To,From,south),

!Lock(From,To), !Dark(To), !HiddenPath(To,From)

Postconditions: At(To), !At(From)

MoveEast(From,To)

Preconditions: At(From), !At(To), NextTo(From,To,east), NextTo(To,From,west), !Lock(From,To),

!Dark(To),!HiddenPath(To,From)

Postconditions: At(To), !At(From)

MoveSouth(From,To)

Preconditions: At(From), !At(To), NextTo(From,To,south), NextTo(To,From,north),

!Lock(From,To),!Dark(To),!HiddenPath(To,From)

Postconditions: At(To), !At(From)

MoveWest(From,To)

Preconditions: At(From), !At(To), NextTo(From,To,west), NextTo(To,From,east), !Lock(From,To),

!Dark(To), !HiddenPath(To,From)

Postconditions: At(To), !At(From)

Open(Container,Item)

Preconditions: Has(Container), Openable(Container), Contains(Container,Item), !Has(Item)

Postconditions: !Has(Container), Has(Item)

Talk(Person,PersonLocation,Room1,Room2,Direction12,Direction21)

Preconditions: Knows(Person,Room1), Knows(Person,Room2), HiddenPath(Room1,Room2),
HiddenPath(Room2,Room1), In(Person,PersonLocation), At(PersonLocation),
NextTo(Room1,Room2,Direction12), NextTo(Room2,Room1,Direction21)

Postconditions: !HiddenPath(Room1,Room2), !HiddenPath(Room2,Room1)

28

Take(Item,Room)

Preconditions: At(Room), In(Item,Room), !Has(Item)

Postconditions: Has(Item), !In(Item,Room)

Unlock(Current,Neighbour,Direction)

Preconditions: At(Current), !At(Neighbour), NextTo(Current,Neighbour,Direction),
Has(Key), Lock(Current,Neighbour), Lock(Neighbour,Current)

Postconditions: !Lock(Current,Neighbour), !Lock(Neighbour,Current)

ClearDarkness(Room,Item)

Preconditions: Has(Item), Purpose(Item,Light), Dark(Room)

Postconditions: !Dark(Room)

29

References

[1] Wesley Tansey, Python implementation of STRIPS. https://github.com/tansey/strips

[2] Malte Gabsdil, Alexander Koller, Kristina Striegnitz. Building a Text Adventure on Description

 Logic. 2001. http://cs.union.edu/~striegnk/papers/dlws.pdf

[3] Will Crowther, Colossal Cave Adventure, 1976.
https://en.wikipedia.org/wiki/Colossal_Cave_Adventure

[4] Scott Adams. Adventureland. 1978. https://en.wikipedia.org/wiki/Adventureland_(video_game)

[5] Tim Anderson, Marc Blank, Bruce Daniels, Dave Lebling. Zork. 1977-1979.
https://en.wikipedia.org/wiki/Zork

[6] Michael Scott McClendon. The Difficulty and Complexity of a Maze
http://t.archive.bridgesmathart.org/2001/bridges2001-213.pdf

[7] McClendon. Complexity of Rectangular Mazes.

http://www.math.uco.edu/mcclendon/complexityrecmazes.pdf

[8] Wikipedia article describing STRIPS https://en.wikipedia.org/wiki/STRIPS

[9] Python 3 documentation. https://docs.python.org/3/

[10] Pygame Wiki. https://www.pygame.org/wiki/GettingStarted

30

https://en.wikipedia.org/wiki/STRIPS
https://www.pygame.org/wiki/GettingStarted
https://docs.python.org/3/
http://www.math.uco.edu/mcclendon/complexityrecmazes.pdf
http://t.archive.bridgesmathart.org/2001/bridges2001-213.pdf
https://en.wikipedia.org/wiki/Zork
https://en.wikipedia.org/wiki/Adventureland_(video_game)
https://en.wikipedia.org/wiki/Colossal_Cave_Adventure
http://cs.union.edu/~striegnk/papers/dlws.pdf
https://github.com/tansey/strips

	1 Introduction
	1.1 Project Aim
	1.2 Text-Based Adventure Games
	1.3 Planning Problems
	1.4 Running the Code

	2 Background
	2.1 Describing Adventure Games with Description Logic
	2.2 STRIPS
	2.3 Maze Complexity and Difficulty

	3 Design and Implementation
	3.1 Receiving and Interpreting the Inputted Action Sequence
	3.2 Generating the Initial State
	3.3 Formatting the Output
	3.4 Difficulty Measurements
	3.4.1 Room Difficulty Measurement
	3.4.2 Item Difficulty Measurement

	3.5 Increasing the Room-Based Difficulty Measure
	3.6 Increasing the Item-Based Difficulty Measure
	3.7 Displaying the Rooms of the World

	4 Results and Evaluation
	4.1 Testing the Software
	4.1.1 The Program Can Generate the Initial State Based on User Input
	4.1.2 The Program Can Increase the Room-Based Difficulty
	4.1.3 The Program Can Increase the Item-Based Difficulty

	4.2 Evaluation of Overall Program

	5 Future Work
	5.1 Create the Game
	5.2 Further Development of Item Placement in the Game
	5.3 More Interactions with NPCs
	5.4 Show Items in Visual Representation of the World

	6 Reflection on Learning
	6.1 Difficulties Overcome in Development
	6.2 Professional Skills

	Appendix A
	References

