
Generating Text-Based Adventure Games

Initial Plan

Author: Thomas Tallis
Supervisor: Dr. Richard Booth

Module Code: CM3203
Module Title: One Semester Individual Project

Credits Due: 40

Project Description

The result of this project will be a program that takes, as input, a simple solution to a text-based
adventure game, and gives, as output a more complex version of the given game world. This more complex
version will be achieved through adding more rooms to the map, creating multiple paths the player can
explore, and introducing new items into the area, such as a key that unlocks a door. The simple solution
should be as unique as possible, this means that, ignoring going back on oneself, there should be one path
that takes the player from the initial room to the final goal state. For example, an initial world may consist of
three rooms and the path to the goal requires the player to move from the initial room, through a connected
room, to the goal room. Further input will contain a list of possible actions that can be taken by the player,
for example: “move 'direction'”, “take 'item'”, etc.

Planning Problem
A planning problem is a way of solving complex problems that require a sequence of actions to move

from a unique initial state, to a final, goal, state. [1] This can be defined in a particular form where an action
has a set of preconditions that are required for it to take place, and a set of effects that will become true if the
action is taken. All preconditions and effects are defined by boolean variables and the action itself usually
takes an argument to define to what the action is applied.

As an example an action may be Move(“north”) and have preconditions such as there must be an
adjoining room north of the current location, represented by the boolean variable neighbour(“currLoc”,
“north”). The effects of this action would include the current location being updated to the room to the north,
i.e. inRoom(“northRoom”) and not inRoom(“currLoc”).

The representation of the game worlds the program will be creating is going to be in the form of a
planning problem. The current state of the problem is therefore represented by the set of boolean variables
that are currently true for the player at a particular time. This means that a typical state will contain an
argument defining where the player is located, e.g. inRoom(“hallway”), and a set of variables that define any
items the player may be carrying, e.g. inInventory(“key”). Along with the state variables, there will also be
variables that remain true for the entirety of the game, these will include a definition of which rooms are next
to each other. Furthermore, variables will be set at the start of the problem to define where items are initially
located before they are picked up, e.g. itemLocation(“key”, “hallway”).

Project Aims and Objectives

Main Objectives
• A planning problem representation of a game world is devised

◦ e.g. the current location will be represented by a boolean function inRoom(“room”)
◦ e.g. the action TakeItem will have preconditions, such as the player is in the same room as the

item, and effects, such as the player is holding the item and the item is no longer in the room
• one or more algorithms that will increase the complexity of a solution are created

◦ through adding more rooms
◦ through adding items required for progression

• Produce a method through which the complexity of a particular game world is calculated
◦ e.g. summing the number of exits of each room and adding the number of items in the world
◦ this will allow the program to determine whether a generated world is better than a previously

generated world or the initial input

Further Objectives
• Create a program that reads the outputted planning problem and builds a playable text-based

adventure

Work Plan

Planning Problem Representation
Time Scale: 12th February – 18th February
Description: A representation of the game world that will be used as input and output for the final program
Deliverables:

• Determination of how the game world will be represented in its planning problem form.
• An initial game world with a simple solution in the determined form for input into the program

Input Into the Program
Time Scale: 19th February – 25th February
Description: A simple program that is able to take, as input, the initial game world as delivered in the
previous milestone.
Deliverables:

• A program that takes input in the form of a planning problem
• It will also be able to understand the input and output some information based on the input

◦ for example, it may list the rooms that are in the world

Scheduled Review Meeting 1
Time Scale: 19th February – 25th February
Description: An extended meeting in week 4 of the semester to discuss initial progress and make any
adjustments that need to be made to the plan

Complexity Calculation
Time Scale: 26th February – 11th March
Deliverables:

• A function that will assign a numerical value to each game world that will describe how complex the
world is
◦ i.e. how difficult it is to find the goal state from the initial state

• Data describing which of the tested algorithms produced the most reasonable complexity value for a
given game world
◦ e.g. whether weighting the factor for the number of items produces a better estimation of how

complex the game is compared with weighting the number of rooms in the world

Adding More Rooms
Time Scale: 12th March – 28th March
Deliverables:

• A function that will add more rooms to the world, increasing the complexity of the game world

Adding Extra Items
Time Scale: 29th March – 15th April
Deliverables:

• A function that will place new items in the world that will be required for progression through the
rooms

Scheduled Review Meeting 2
Time Scale: 16th April – 22nd April
Description: An extended meeting after Easter recess to discuss current progress and future adjustments to
the initial plan to meet any uncertain deadlines.

Writing Report
Time Scale: 16th April – 10th May
Deliverables:

• A final report covering the overall project, detailing the approach and findings of the resultant
program as well a complete set of achieved deliverables.

Further Objective: Playing the Generated Adventure Games
Time Scale: Any free time after completion of main objectives
Description: A program that will be given, as input, an adventure game as a planning problem, and will
produce a game from the planning problem with which a user can interact.
Deliverables:

• A program that allows the user to play an adventure game that has previously been saved as a
planning problem

References

1. planning problem definition adapted from:
https://en.wikipedia.org/wiki/Automated_planning_and_scheduling (last accessed 05.02.2017)

https://en.wikipedia.org/wiki/Automated_planning_and_scheduling

