

Content Management System for a
Real-Time e-Commerce Marketplace

Final Report

CM3203 - One Semester Individual Project, 40 Credits

Author: Tom Wynne-Owen

Student Number: C1530734

Supervisor: Natasha Edwards
Moderator: Xianfang Sun

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Abstract
The aim of this project is to create an application that provides consumers with the
ability to buy and sell products between one another in a real-time marketplace similar
in style to the stock market. The system allows users to place bids and asking prices on
products to buy or sell products. The solution has been implemented as a web
application.

This document details the entire developmental life-cycle of the system, from
background research to implementation and evaluation. I have carried out background
research and identified key aims and limitations for the project. Throughout the report I
compare and contrast the options available and justify the final decision based on the
aims and limitations.

1

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Acknowledgements
Firstly, I would like to express my gratitude to my supervisor Dr. Natasha Edwards for
her invaluable guidance and support throughout the completion of this project.

I would also like to thank my family for their continued support and allowing me to be
where I am now, particularly my father for finding the time in his schedule to help me at
such short notice.

2

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Contents
Abstract 1

Acknowledgements 2

1. Introduction 6

2. Background 8
2.1. The Problem 8
2.2. Aims & Objectives 8
2.3. Constraints 10

2.3.1. Resource limitations 10
2.3.2. Time limitations 10

2.4. Potential Stakeholders 11
2.5. Current Solutions 11

2.5.1. osCommerce 12
2.5.2 PrestaShop 13
2.5.3. eBay 14
2.5.4. StockX 14

2.6. Choosing Tools and Methods 14
2.6.1. NodeJS 14
2.6.2. Real-Time Functionality 16

Polling and Piggybacking 16
Comet 17
Socket.io 18
Real-time Databases 18
Data Stream Networks 19
Conclusion 20

2.6.3. Choosing the Database 20
2.7. Trust in e-Commerce 21

3. Specification & Design 22
3.1. Requirements Specification 22

3.1.1. Must 22
3.1.2. Should 27
3.1.3. Could 29
3.1.4. Will Not 31
3.1.5. Non-functional Requirements 32

Usability 32
3

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Performance & Scalability 32
Security 32
Portability 32

3.2. Design 33
3.2.1. Use Case Diagrams 33

Buy from an Asker 34
Sell to a Bidder 35
Place a New Bid 36
Place a New Ask 37

3.2.2. User Interface Design 38
Homepage 39
Product page 40
Login 41
Register 42
Profile area 43

3.2.3. Application structure 45
The Final Application Structure 46

3.2.4. Database Design 49
3.3. Risk Analysis 52

1. Data Loss 53
2. Overly Optimistic Schedule 53
3. Absence or Illness 53
4. Unclear Specification 53
5. Changeability 54
6. Insufficient Skill set 54

4. Implementation 55
4.1 Authentication 55
4.2. Placing a Bid or an Ask 57
4.3. PubNub 59
4.4. Security & Validation 60
4.5. Placing Orders 61
4.6. Problems Encountered 62

5. Results & Evaluation 63
5.1. Changes to the Initial Plan 63

5.1.1. Application Structure 63
5.1.2. PubNub Configuration 63

4

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

5.2. Testing Functional Requirements 64
5.2.1. Exploratory Testing 64
5.2.2. Test Cases 65

5.3. Testing Non-Functional Requirements 66
5.3.1. Usability 66
5.3.2. Performance & Scalability 66

Performance 66
Scalability 67

5.3.3. Security 67
5.3.4. Portability 68

6. Future work 69
6.1. Payment processing 69
6.2. Product Categories and Variants 69
6.3. Using the Data 70
6.3. Portfolios 70
6.4. Monetisation Strategies 71
6.5. Usability Testing 71

7. Conclusion 72

8. Reflection on Learning 73

Appendix 75
A: Instructions 75

Prerequisites 75
Install & Run 75

B: Test Cases: 76

References 87

5

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

1. Introduction
The purpose of this project is to design and build a secure, scalable, and extensible
e-Commerce content management system that enables users to buy from and sell to
one-another using a real-time bidding marketplace, similar in style to the stock market,
where supply and demand determine the price of the item. To achieve this, the purpose
of the project has been separated into five key aims, detailed in section 2.2. These aims
are defined by the motivation for the system: to simplify and increase the participation in
consumer-to- consumer e-commerce.

The vast majority of consumer-to-consumer e-commerce platforms, a popular example
being eBay, rely on the user to browse through potentially hundreds of listings for the
same product product to find a suitable one to purchase, and even then it can be hard
to judge whether the asking price is fair. The motivation for this system is to simplify and
speed up the process of buying and selling items in the marketplace, to increase
participation in consumer-to- consumer commerce. According to research conducted by
Talkmobile, 15 million Britons have an old tech item left in their home, worth an
estimated combined £300 million [1]. Reducing the time investment and complexity of
buying and selling products on the second hand marketplace could potentially
massively increase participation, and the proposed system would eliminate this need to
browse through hundreds of listings, in favour of having a single page for a single
product, where you purchase from any seller - significantly reducing the time it takes to
purchase items.

This approach to commerce is not a novel one, it has been used by the stock market
since its inception, however until recently it has not been successfully adopted into an
online marketplace for selling physical items. At present there is no available
open-source e-commerce content management system that addresses this style of
commerce. Popular e-commerce content management systems available today, such
as Magento and PrestaShop, focus on the traditional business-to-consumer or
business-to-business style of commerce. While there are no available solutions for a
business to deploy on their own, there are proprietary platforms that do facilitate this
style of commerce. Once such example is StockX, a proprietary platform that
specialises in the market for luxury clothing, shoes and watches (Section 2.5.4).

Deploying a system of this nature presents various opportunities to create enormous
value. One option is to directly monetise the system through methods such as
commission fees or membership fees (section 2.4), another is the ability to leverage the
magnitude of structured, consistent, temporal market data that the system produces.

6

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

This data would enable rich analysis of the marketplace in a way that existing consumer
-to-consumer solutions such as eBay cannot offer, as their listings system is by nature
incongruent with this application.

This report details the successful specification, design, implementation and testing of
such a system. The approach I have taken is to implement it as a web application, with
design considerations to make it a robust, extensible and scalable application.

7

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

2. Background

2.1. The Problem
As stated in the introduction, buying and selling items on the second-hand market
requires users to search through potentially hundreds of listings, all with different prices
and descriptions for the same product. Take, for example, a new product release such
as an iPhone; during the weeks after a product launch, it is often reported that the
product is out of stock and is being sold on third-party platforms such as eBay or
Gumtree. If you wished to purchase the product on one of these platforms you would
likely have to browse and decide between hundreds of product listings for the same
product, all with varying prices, titles, descriptions, images, etcetera, the wide variation
of listings and prices can make it difficult to judge the actual value of the product and if
you are paying a reasonable price.

A solution to this problem would be to have just one place where you could go to get all
of the information you needed before making a purchase or sale. This page would
contain data on asking prices, bids and completed transactions as they are made,
allowing you to create a real-time, data-driven summary of the market for any product,
and performing real-time analysis of the marketplace, such as deriving the value of
items using the bid-ask spread.

2.2. Aims & Objectives
The overall purpose of this project is to create a system that provides the ability for
users to buy and sell products in real time in a bidding marketplace. To achieve this
goal the system will be implemented as a web-application, as this allows the system to
be platform independent, enabling a larger user base to use the system.

Aim 1: Create a complete application that enables a user to purchase, sell, bid on

or submit an asking price for multiple products.

This is the aim that defines core functionality and the shape of the application and
guides the functional requirements specified in section 3.2. This aim outlines the
minimum requirements for the project to be complete.

Aim 2: Create a secure, robust and scalable system, without compromising

usability or performance.

8

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

The system should be designed and implemented in a way that theoretically it could be
expanded upon and deployed into production. This means that the final product should
provide core functionality that is robust and scalable. The specification and design must
take this aim into account these considerations at every stage. This aim is important to
ensure that the work completed within the project has a purpose and can be further
developed into a system that can be deployed and used.

Aim 3: Design and implement the system in such a way that it is easily

maintainable, extensible, and compatible with a variety of popular
platforms, including desktop and mobile.

As detailed in the previous aim, the system is designed to be able to be deployed in the
future, so in addition to being robust and scalable, it needs to maintainable and
extensible. This means that best practices should be used and the code should be well
commented, consistently styled and concise. Additionally it needs to be compatible with
as many devices as possible so that the user-base is not limited in size. The reason for
this aim is to ensure that continuation of the development of the project in the future is
as easy and efficient as possible.

Aim 4: Enable the communication of new bids and asks in real-time (less than

one second)

If the system does not facilitate real-time updates without page refreshes then this will
limit the business case for the application. If bids, asks and orders are coming in
quickly, requiring constant page refreshes from the user will severely affect the system’s
effectiveness and usability.

Aim 5: Design and implement a simple and usable frontend user interface for the

system.

The initial plan for the project stated that a project aim was to create and test a user
interface that follows good HCI principles, however as the project developed, the scope
has shifted to focus on the backend. It is, however, crucial to provide a usable front-end,
as if the system is confusing or difficult to use then it will fundamentally fail to address
the problem defined in section 2.1. If the time it takes to learn how to use the system is
too long then the platform will have no real value, as users would rather spend the time
to use competing platforms such as searching through listings on eBay.

9

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

2.3. Constraints
Due to the time and resource limitations of the project, there are a number of constraints
to final product. Efforts have been made in the specification and design of the project to
reduce these limitations as much as possible and to make them easy to address and
correct where applicable in the future.

2.3.1. Resource limitations
Testing the scalability and robustness of the system is infeasible in the project as I do
not have the resources to deploy the system at scale. Even though this constraint is in
place, considerations have been made in the specification and design of the system to
try and make sure that when the system is extended and then deployed in the future, it
is scalable, secure and robust.

Additionally, some security features, such as obtaining an SSL certificate for HTTPS
connections require resources that are not available to me for this project. While these
limitations exist, the specification and design of the system has taken these factors into
account when making decisions, for example the key reason NodeJS was used was
due to its non-blocking I/O design.

2.3.2. Time limitations
While creating a simple user interface is an aim for the project, the scope of the project
focuses on creating an extensible backend to facilitate this type of marketplace instead
of the user interface. This alteration to the scope was made due to the time constraints
on the project, this means that designing, testing and implementing a user interface for
the system falls outside of the scope. Additionally, the timeframe limited my ability to
complete full compatibility testing for the range of client devices that could use the
system.

The completed project also does not have sufficient security and validation mechanisms
to be used in production, particularly for handling user data and payment processing. As
a result there is no method to make payments with the system, as this falls outside of
the scope of the project. This constraint is a combination of resource and time
limitations on the project, as NodeJS provides the ability natively and with NPM
modules to implement secure systems for the most part, however as mentioned in
section 2.3.2 some features such as SSL require more resources to implement.

10

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Additionally, the time must be taken to penetration test the system to verify that the
system is secure.

2.4. Potential Stakeholders
There are 15 million Britons with unused electronic devices in their homes[1] that could
potentially be traded on the platform. The platform has two key stakeholders:
consumers who are looking to purchase products second-hand, and consumers who
have unused products that they want to sell. The platform can both enable buyers to
make a more informed purchase in less time than current solutions and enable sellers
to make a faster and easier sale.

Deploying the system would present a number of different models for monetisation,
these could include models such as charging commission for each transaction, charging
for bids and asks, or charging a membership fee. Implementing these features falls out
of the scope of the project however it would be possible to add them in the future.
These features have been discussed in more detail in section 6.4.

2.5. Current Solutions
At present there are few content-management systems that address this specific
problem, the majority of available to download or purchase e-commerce CMS packages
focus on a business-to-x model, whereas the focus of this project is a
consumer-to-consumer based e-commerce system. Whilst the available open-source
solutions are not a perfect match, evaluating them can still provide some valuable
guidance on the approach to the design and implementation of my solution as well as
highlight some novel solutions to sub-problems and appropriate best practices.

There are however, closed source platforms such as eBay, Gumtree and StockX that
offer consumer-to-consumer commerce. The most relevant example is that of the latter -
StockX, a platform that offers the same style of bidding marketplace for luxury
Handbags, Shoes and Watches.

11

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

2.5.1. osCommerce
Link: https://www.oscommerce.com/
Licence: GNU GPL

osCommerce is a free, open source e-commerce solution that anyone can download
themselves and install on their own server. It is written entirely in PHP, and requires a
MySQL database to function. It is one of the oldest and longest running e-commerce
solutions, boasting an age of 18 years. This maturity gives it a strong selection of over
8000 free themes, extensions and modifications, as well as a strong community of over
300,000 users that are active in the product forum. Whilst the system is completely
open source and free for anyone to download, osCommerce monetises the product with
a partnership with their hosting partner: ‘1&1’.

While osCommerce is not the same style of real-time marketplace content management
system that this project aims to create, it does offer some valuable insight into the
implementation of features such as creating reports and promotions, as well as best
practices for storing product, user and order data.

osCommerce is a fully featured e-commerce tool that you can run a business on.
Additionally the functionality can be extended dramatically with free, open source
extensions available on their website. The standard osCommerce package has the
following key features:

● Product catalogue management. Here you can have as many products as
you want, and you can define as many categories and product attributes
as needed.

● Simple inventory control that consists of a stock counter.
● Customer reviews on products.
● Creating special offers and coupons.
● Customer accounts and customer management.
● Currency, language and local tax settings.
● Powerful report builder.
● Order processing features.
● Database backups, security checks.

Unfortunately the standard osCommerce theme that comes with the package is
extremely dated, necessitating a different theme to be used, however there is a large
selection of themes available for free from the add-ons repository. In addition, the

12

https://www.oscommerce.com/

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

standard package also misses some important features, such as an inventory
management system, or a way of providing different shipping options.

2.5.2 PrestaShop
Link: https://www.prestashop.com/en
Licence: OSL v3

PrestaShop is another free, open source business-to-x style e-commerce system
written in PHP with a MySQL database. The base software package is completely free
to download and install on your own server, however PrestaShop monetises its product
with its Addons Marketplace, where users can purchase themes, extensions and
services for the base package. PrestaShop’s product catalogue management and
inventory control system is more powerful than that of the osCommerce system.
Additionally it has a search engine optimisation tool for products in your catalogue and
powerful real-time analytics tools that provide useful data on traffic and sales figures.

PrestaShop has a large and active community to support the product, their website
boasts a community of one million members. The software facilitates the following key
features:

● Versatile product catalogue management, products can be divided into
categories - which you can define however you want. PrestaShop also
provides some SEO tools for products. The software also has a bulk
import tool to import product listings from CSV files or Excel spreadsheets.

● Powerful order management allows you to view, edit, cancel and delete
orders after they have been place, for example discounts can be applied
to orders after they have been place.

● Inventory control features that can track inventory and give restocking
alerts based on sales data.

● Powerful real-time analytics and extra analytic features such as
abandoned cart information, customized promotions and an automatic
email system.

Whilst PrestaShop is a powerful e-commerce tool, it does require some expertise in web
technologies to setup the software and database, however once the software is installed
on the server, the backroom panel is fairly intuitive for any user to continue setting up
the online store.

13

https://www.prestashop.com/en

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

2.5.3. eBay
Link: https://ebay.co.uk/

Ebay provides a platform for anyone to list almost any item for sale. Ebay allows users
to post a new listing for each item they want to sell, this means that a potential buyer
needs to search through tens or hundreds of listings of the same product, introducing
friction in the buying process. Additionally, sellers have two different ways to list a
product, either as an auction or as a fixed price ‘buy it now’ listing.

2.5.4. StockX
Link: https://stockx.com/

StockX is the most similar solution to the proposed problem, it is a real-time bidding
marketplace that specialises in the luxury clothing, shoe and watch marketplace. The
system works by allowing users to place a bid or ask on a product. If a newly placed bid
is higher than the lowest ask on the product, then a transaction is automatically made
where the bidder purchases the item for the lowest asking price, conversely if a newly
placed ask is lower than the highest bid on the product, then a transaction is
automatically made where the asker sells the item for the highest bid price.

StockX does not disclose how their system pushes new bids, asks and orders to the
clients in real time as they are made, however from studying the client source code with
Firefox developer tools, it appears as though they use the WebSocket protocol for this
functionality, likely with a framework such as socket.io. Their service also provides
historical pricing data for all of the products in its database, and they claim to gather this
data from its own transactions as well as from third party sources, however it does not
name these third parties.

2.6. Choosing Tools and Methods

2.6.1. NodeJS
As there are no prevalent open-source solutions addressing this specific area in
e-commerce to investigate I have chosen to build the web-application from scratch.
There are a vast number of options for languages and web frameworks to build the
system with. I will be using a web framework for this project to make development as

14

https://stockx.com/
https://stockx.com/

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

fast as possible and to take advantage of the security features, maintainability and
extensibility that many frameworks provide.

I have chosen to use NodeJS and the Express framework to implement the system. I
chose to use NodeJS for a number of reasons, primarily because its non-blocking
design increases speed and scalability. This non-blocking design means that when I/O
operations occur, such as querying a database, they happen asynchronously, allowing
the rest of the program to continue running whilst the query runs in the background, and
when the query is complete a callback function is called[2]. This design makes NodeJS
ideal to create scalable network apps that can handle receiving thousands of concurrent
requests and still perform well.

Another reason I have chosen to use NodeJS is because it is a JavaScript framework,
which allows me to use JavaScript across across both sides - client and server - this
ubiquity means that code can be written once and used anywhere across the stack, it
also increases compatibility and decreases complexity as it means everything is written
in the same language, as opposed to using a PHP or Java backend paired with a
JavaScript front-end, as using different multiple languages typically decreases
compatibility and can make development more difficult.

Figure 2.1: Number of unique modules in each repository over time. Data provided by Module
Counts (http://www.modulecounts.com/).

Additionally, a key advantage of using NodeJS is because of the prevalence of it.
According to the 2018 Stack Overflow Developer Survey[3], JavaScript was the most
popular technology among respondents and NodeJS was the most popular framework.

15

http://www.modulecounts.com/

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Due to this popularity NPM - Node Package Manager, as you can see from figure 2.1, is
one of the world’s largest and fastest growing repository of modules (data provided by
Module Counts [4]). This means that there is a huge amount of support from a large
community and there is a massive selection of modules - notably Passport and PubNub
- to use to aid development.

2.6.2. Real-Time Functionality
The ability to publish the new bids, asks and orders as they are made in real-time is a
key requirement for the system. The first decision to be made when designing this
functionality is what approach to take. There are a number of ways to achieve this
functionality including, but not limited to the following:

● Polling or Piggybacking
● Comet
● Socket.io (WebSockets)
● Real-time database
● Data Stream Networks

Polling and Piggybacking
The first and most crude option, this would send a request to the server from the client
for the latest data at a set interval. The advantage of this approach would be twofold: it
would be much simpler to implement and it would be supported across a much larger
selection of clients, however it cannot be classed as real-time unless the polling interval
is extremely short, making it very inelegant and wasteful on server bandwidth and
resources, with a large amount of clients polling the server, this can accidently simulate
the effects of a distributed denial of service attack.

Piggybacking is a very similar technique to the polling technique, however it reduces the
load on the server. The way this technique differs from traditional polling techniques is
that if there is no change in the server’s state since the last poll, the server will instead
return a message saying that there is no change to the data. The advantage of this
method is that it can reduce the amount of requests that the server has to respond to,
reducing load. The disadvantages of this method are that it does not scale well and
there is a need to create a robust way of determining and comparing the state of the
client and server. This could be achieved using timestamps or hash functions, however
if the messages are small and frequent this could be less efficient than simple polling
[5].

16

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Comet
Comet is an umbrella term for a number of techniques designed to enable the server to
push messages to the client when the server’s state changes. These techniques can be
separated into two main classes: long polling and streaming.

Long polling is very similar to the polling technique described above, however when the
client polls the server for information, the server will hold this request, keeping the
request alive, and only responding once there is new data available. Once the client
receives the response, it immediately sends a new long poll request and repeats this
process indefinitely. This approach facilitates push data from the server, and it is much
more efficient than traditional polling, however dealing with the requests from the
backend can be complex, and the complexity can be exacerbated with scale.[6]

Comet streaming techniques work in a similar way to long polling, where a HTTP
request is sent from the client and kept alive by the server, however with streaming
techniques there will only ever be one indefinite request that is never killed. Through
this request, the server can keep pushing data to the client indefinitely. Comet
streaming is typically achieved in one of two ways, either using ‘forever iframes’ or
through ‘multipart XML HTTP requests’.[7]

The forever iframes technique uses hidden iframes in the HTML page that points the
source to a path that the server returns events to. When an event occurs, the server
clears the iframe and then writes a new script into it, which will then be executed by the
client. This method has the advantage of being compatible with all browsers that
support iframes (all major browsers) and is relatively simple to implement. The
disadvantages of this method are that it can be difficult to determine if the connection
has been broken and it can be difficult to handle errors.

Multipart XML HTTP requests use the multipart functionality for AJAX supported by
some browsers, this allows an AJAX request to be returned over time in multiple parts,
as and when each of the parts are sent by the server. An AJAX request is kept open
and each time an event occurs on the server, the server adds a new section to the
multipart response.[8]

17

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Socket.io
Socket.io is a JavaScript library that abstracts the WebSocket protocol to provide
real-time two-way communication between client and server. Socket.io is supported on
almost any modern browser as it is built with JavaScript, additionally, iOS supports
socket.io natively for push notifications [26].

Socket.io is protocol agnostic, by default it will always try to use the WebSocket protocol
where available however if WebSocket is not supported by either the client or server it is
able to fallback on other protocols, such as traditional polling. While socket.io does do a
lot to abstract the complexity of streaming data, it still requires you to host and maintain
your own server infrastructure.

Real-time Databases
A data stream is a real-time, continuous, ordered (implicitly by arrival time or explicitly
by timestamp) sequence of items. It is impossible to control the order in which items
arrive, nor is it feasible to locally store a stream in its entirety. [9]

Real-time databases, such as RethinkDB, are designed to facilitate the communication
of large-scale data streams in real time. Instead of traditional database systems that
require you to poll for data changes, they push data to the client as it is updated in
real-time. The advantages of the RethinkDB system are that it facilitates rich real-time
querying of the database using its own query language - ReQL, it natively supports
pushing data to the client and it can dramatically reduce the time it takes to build
real-time applications [10].

While it is a powerful query language, the plan for the integration of real-time
communication for this project does not have any need for the features that ReQL
offers. Another key disadvantage of RethinkDB is that, whilst it can be used as a
general purpose database, it is not suitable for storing user data and authenticating
users. This would make the addition of a permanent database a necessity, and running
two different database systems simultaneously would introduce unnecessary complexity
and present difficulties ensuring data security and integrity.

An additional concern is the unstable history of the platform. The company behind
RethinkDB is a startup with an unstable history [11] and the RethinkDB software is a
fairly immature, leading-edge product. As a result the product does not have the same
support and compatibility that competing options offer which could lead to problems

18

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

maintaining the system in the future, making the system unable to fulfil aim 2 (section
2.2).

Data Stream Networks
Data stream networks facilitate the communication of bidirectional data streams in
real-time between an arbitrary number of users. Data stream networks are similar to
real-time databases however they offer some additional features on top of real-time
databases, including storing channel history, detecting presence of clients, and unicast
or multicast publishing patterns.

PubNub is a data stream network service that allows you to purchase usage of their
existing worldwide data stream network infrastructure and 70 APIs for different
platforms instead of having to build your own. The advantage of this is that you no
longer have to maintain the performance, scalability and security of the real-time data
communication system and PubNub guarantees delivery of messages in 250
milliseconds or less. It is also protocol independent, it will use the WebSocket protocol
wherever possible however it can fallback onto polling for clients that do not support
WebSockets, maximising compatibilty. All of these features directly contribute toward
the fulfiment of aims 1 and 2 (section 2.2).

PubNub utilizes a Publish/Subscribe model for real-time data streaming and device
signaling which lets you establish and maintain persistent socket connections to any
device and push data to global audiences in less than ¼ of a second. [12] Figure 2.2
shows the two patterns that PubNub facilitates for communication between users:
unicast mode (left) and multicast mode(right). In unicast mode there is a one-to-many
relationship with a single publisher to whom many clients can subscribe. Conversely, in
multicast mode there is a many-to-many relationship in which there can be an arbitrary
number of both publishers and subscribers [12].

Figure 2.2: PubNub’s channel design patterns for publishing and subscribing. Unicast (left) and
Multicast (right). Images courtesy of PubNub [12]

19

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

PubNub also has charting features built in using its Eon chart engine, which enables
rendering charts from the messages sent through a channel. Eon creates multiple
different types of charts and graphs that updates in real-time as messages are
published. This charting engine could be used to provide historical pricing graphs and
other useful visualisations on the product page. Additionally, unlike real-time databases
such as FireBase, PubNub supports the storage of channel history. This means that the
historical data can be included in the real-time charts on the product page.

Conclusion
The final decision I made was to use PubNub’s infrastructure to push messages to all of
the clients viewing products. PubNub has a free account option for development and
testing that allows up to one hundred devices to be connected simultaneously and for 1
million messages monthly. This limit is more than enough for the development and
testing of the system, however if the system is deployed the paid service will be
required.

The plan calls for PubNub to be used in unicast mode, where the server publishes a
message to all of the subscribers - the clients viewing the product - would allow
real-time communication of new bids, asks and orders to all of the currently viewing the
product.

Using PubNub for this project is advantageous because of the time constraints in place
for the development of the system. To design, build and test a similar system from
scratch, even if it were feabile, would take up a significant portion of the project’s
development time reinventing the wheel, and PubNub will be able to abstract the entire
process and provide a more performant, scalable and secure service than I could
deploy. Additionally, the JSON document model that JavaScript and MongoDB both use
is the same model that PubNub uses for communication, which will maximise
compatibility across the whole system.

2.6.3. Choosing the Database
As detailed in section 2.6.2, whilst PubNub does enable the storage and transmission of
data that is passed through the channel, it does not, by default, store the messages
permanently and it does not provide many querying options for the data. This means
that PubNub is not an appropriate method for storing permanent data such as product
data.

20

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

The decision I made when choosing the database was to use a document-oriented
NoSQL database system: MongoDB. MongoDB is a flexible and performant database
management system that has been designed to scale extremely well through the use of
its sharding technology. While relational database systems such as MySQL or Oracle
do have the advantage of ACID transaction management (Atomicity, Consistency,
Isolation, Durability), they do not offer the flexibility in schema design and horizontal
scalability that MongoDB does. These features make the database schema much easier
to modify and extend after-the-fact, as MongoDB leaves much of the schema design
and validation to be enforced by the program instead of the database system. To do
this, NPM has a module called Mongoose, an object relational middleware for
MongoDB. This allows me to define a number of schemas and relationships for my data
models, and abstracts the MongoDB connection and querying mechanisms. It also
offers powerful validation options for these schemas, allowing me to do any data
validation within the application logic instead of the database [13].

Another benefit of using MongoDB with this project is it’s JSON (JavaScript Object
Notation) structure for documents. This structure makes it ideal for programs written in
JavaScript - such as this system - as it uses the native notation which makes it fully
compatible. Additionally and more specifically to this project, PubNub shares the same
JSON notation for sending messages, which will allow me to make JSON the ubiquitous
data format across the entire system.

2.7. Trust in e-Commerce
In general, trust in the context of consumer-to-consumer e-commerce as defined by
Pavlou, Liang & Fygenson is "a buyer's intentions to accept vulnerability based on
her beliefs that transactions with a seller will meet her confident transaction
expectations due to the seller's competence, integrity, and benevolence" [14]. A
crucial consideration when creating a consumer-to-consumer e-commerce system is
how to create trust between users transacting with one-another and between users and
the platform. One approach to this issue is for the organisation to act as a broker,
having the seller ship the item to the organisation for verification and then having the
organisation ship to its final destination.

Another trust consideration when using an ecommerce platform is the security and
privacy of user data. If the system cannot be trusted to provide security and privacy for
users’ data then this will negate any consumer confidence and any benefits to the
system over its competitors. This is a significant factor for the justification for the second
key aim for the project, to create a secure system (section 2.2).

21

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

3. Specification & Design

3.1. Requirements Specification
To aid the implementation process, in this section I have detailed all of the functional
and quality requirements for the completed system and all of its features. This list
enabled me to refer to specific requirements to make decisions during the design and
implementation phases.

The requirements specification has been completed with an awareness of the time and
resource limitations affecting the project, and the commitment to create a scalable,
robust and extensible system. Additionally, the requirements have been written in an
order that I plan to implement them - allowing me to work through each one in sequence
and almost use it as a todo list.

3.1.1. Must
Requirement 1.1: Storing Product Data

Requirement:

The system must allow the storage and retrieval of product data from a client. It
must allow the retrieval of data for an individual product or multiple.

Acceptance Criteria:

● The data is delivered formatted in a way that is accurate and concise.
● The system provides an appropriate error message in response if no

product could be found.

Requirement 1.2: Adding Products

Requirement:

The system must allow an administrator user to add a product to the database,
given required product data

Acceptance Criteria:

● The system ensures the user is an authenticated administrator before
allowing them to add a new product.

22

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

● The system lets the administrator user to add a product title, slogan and a
description.

● The system supports the uploading of one or multiple product images.

Requirement 1.3: User Creation

Requirement:

The system must enable a user to create an account.

Acceptance Criteria:

● The system requires the user to provide a new username and password.
● The system does not allow the creation of an account with the same name

as an existing account.
● The system stores the password in a secure way, by salting and hashing

it.

Requirement 1.4: User Authentication

Requirement:

The system must allow a user who has registered an account to log in to the
account and access the account’s profile.

Acceptance Criteria:

● The system confirms the username and password provided match a
record in the database. If there is no match the system displays a
message saying that the credentials were not recognised.

● The system allows a maximum of 5 failed attempts to log into an account.
● The system clearly shows the user when they are logged in and gives

them an option to log out.

Requirement 1.5: Administrator Authentication

Requirement:

The system must provide a method to differentiate between normal user
accounts and administrator user accounts.

Acceptance Criteria:

23

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

● Authenticated administrator accounts are given a visible link to the
administrator area.

● Non-administrator accounts must not be able to access the administrator
area in any way.

Requirement 1.6: Place Bid

Requirement:

The system must allow an authenticated user who wishes to buy a product to
place a bid on said product. The bid must be viewable to the public.

Acceptance Criteria:

● The system ensures the input is a valid number.
● When the bid has been placed, other users viewing the same product

page should be notified within 1 second, with no need to refresh the page.
● The system informs the user placing the bid if their new bid will become

the new highest bid for the product.

Requirement 1.7: Place Ask

Requirement:

The system must allow an authenticated user who wishes to sell a product to
place an asking price to sell said product. The asking price must be viewable to
the public.

Acceptance Criteria:

● The system ensures the input is a valid number.
● When the ask has been placed, other users viewing the same product

page should be notified within 1 second, with no need to refresh the page.
● The system informs the user placing the ask if their new ask will become

the new lowest ask for the product.

Requirement 1.8: View bids and asks on a product

Requirement:

The system must allow anyone to view all of the current bid prices and asking
prices on a product at any time.

24

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Acceptance Criteria:

● The system displays bids and asks in a table format on the product page.
● The data is concise and anonymised.
● The data can be sorted by either price or date, ascending or descending.

Requirement 1.9: Purchase from an asker

Requirement:

The system must allow an authenticated user to place an order to purchase a
product for the the lowest asking price.

Acceptance Criteria:

● The product page displays clearly what the current lowest open asking
price is for a product.

● The system provides a button that allows a user to purchase from the
lowest asker.

● The system closes the ask once the order has been placed.
● If there are no open asks on a product, the system provides the option to

place a bid instead.

Requirement 1.10: Sell to a bidder

Requirement:

The system must allow an authenticated user to accept a bid and place an order
to sell the product for the agreed bid price.

Acceptance Criteria:

● The product page displays clearly what the highest open bid is for a
product.

● The system provides a button that allows a user to immediately sell their
item to the highest bidder.

● The system closes the bid once the order has been placed.
● If there are no open bids on a product, the system should provide the

option to place an asking price instead.

Requirement 1.11: View all of your bids

25

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Requirement:

The system must allow a user to view a list of all of the open bids they have
placed on any item(s).

Acceptance Criteria:

● Each element of the list contains the product name, the bid price, the time
it was placed and the status of the bid (open or closed).

● The list should be sortable by date.

Requirement 1.12: View all of your asks

Requirement:

The system must allow a user to view a list of all of the open asking prices they
have placed on any item(s).

Acceptance Criteria:

● Each element of the list contains the product name, the ask price, the
time it was placed and the status of the ask (open or closed).

● The is should be sortable by date.

Requirement 1.13: View all of your orders

Requirement:

The system must allow a user to view a list of all of the orders they have placed
in the past.

Acceptance Criteria:

● Each element of the list contains the product name, the sale price, the
time the order was placed and the status of the order.

● The list is sortable by date.

26

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

3.1.2. Should
Requirement 2.1: Search the product database

Requirement:

The system should have the ability for a user to search for products with
keywords.

Acceptance Criteria:

● The system searches for keywords in the product title and description.
● The system returns a list of products descending in similarity to the search

term.
● If there is no match, the system informs the user that no product matched

the search term.

Requirement 2.2: Update the product page automatically

Requirement:

The system should update the product page as bids, asks and orders are made.

Acceptance Criteria:

● The product page updates the lowest ask and highest bid values shown
on the page when they are updated.

Requirement 2.3: Notify the user of events

Requirement:

The system should notify a user of the following events:
● Their open bid has been outbid by another user.
● Their open ask has been undercut by another user.
● Their bid or ask has been accepted by another user.

Acceptance Criteria:

● The notifications display the new bid or ask price, or order price as well as
the timestamp.

● The notifications are displayed ordered by the time they occurred, with the
most recent first.

27

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Requirement 2.4: Display previous transactions on the product page

Requirement:

The system should provide a list of anonymised completed orders on the product
page.

Acceptance Criteria:

● The list only contains the timestamp and the price of the order.
● The list can be re-ordered by time or price, ascending or descending.

Requirement 2.5: Allow users to search for products with keywords

Requirement:

The system should allow a user to search the database for products for keywords
contained in the product title and description.

Acceptance Criteria:

● A list of most similar products to the search term is returned.
● The list contains links to the product page for each element it contains.

Requirement 2.6: Provide useful and timely data on the state of the marketplace

Requirement:

The system should display the following information on a product page:
● All of the open bids and asking prices.
● The highest open bid.
● The lowest open asking price
● The number of completed transactions.

Acceptance Criteria:

● The open bids and asking prices are displayed in a table or list that can be
sorted by either time or price.

● The highest open bid on the product is clearly displayed and the user can
immediately sell to the highest bidder with the click of a button.

● The lowest open ask for the product is clearly displayed and the user can
immediately purchase the product from the asker with the click of a button.

28

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Requirement 2.7: Provide useful visualisations of the marketplace

Requirement:

The system should provide a line graph displaying the prices of bids and asks
over time and a line graph containing the order prices over time.

Acceptance Criteria:

● The graphs are clearly titled and labeled.
● The graphs update in real-time.

3.1.3. Could
Requirement 3.1: Allow third party authentication for accounts

Requirement:

The system could allow users to create an account and login using third party
accounts such as a Google account or Facebook account.

Acceptance Criteria:

● The system gives an option on the register page to create an account with
a third party account.

● The system allows a user to login with a selected third party account.

Requirement 3.2: Send relevant push notifications to the user

Requirement:

The system could use supported browsers push notification features to
automatically notify users of the following events:

● A new highest bid on the product they are looking at.
● A new lowest ask on the product they are looking at.
● Their bid has been accepted.
● Their ask has been accepted.

Acceptance Criteria:

● A push notification with appropriate information is sent to the client within
5 seconds of the event occurring.

29

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Requirement 3.3: Automatically complete purchase

Requirement:

The system could automatically complete a purchase if the user places a bid that
is higher than the current lowest open ask.

Acceptance Criteria:

● If a user inputs a bid amount that is higher than the lowest ask then they
will be redirected to a checkout page where they can immediately
purchase the product for the lowest asking price.

● The user is informed before submitting that they will instead immediately
purchase the product.

● The new bid is not placed.
● The asking price is closed when the order is complete.

Requirement 3.4: Automatically complete sale

Requirement:

The system could automatically complete a sale if the user places an ask that is
lower than the current highest open bid.

Acceptance Criteria:

● If a user inputs an ask amount that is lower than the highest bid then they
will be redirected to a checkout page where they can immediately sell the
product for the to the highest bidder.

● The user is informed before submitting that they will instead immediately
sell the product.

● The new asking price is not placed.
● The bid is closed when the order is complete.

30

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Requirement 3.5: Update Product details

Requirement:

The system could allow an admin to edit the static details of a product.

Acceptance Criteria:

● The admin settings area has a list of products in the system each with an
edit button.

● When the edit button is clicked, the system will show a view with a form to
change the name, slogan, description and product image.

● The changes made take effect immediately.

3.1.4. Will Not
Requirement 4.1: Do not allow unauthenticated users to place bids, asks or orders

Requirement:

The system will not allow any user who is not logged in to place an ask, bid or
order on any product.

Acceptance Criteria:

● When a user who is not logged in tries to place a bid, ask or order they are
redirected to the login page.

31

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

3.1.5. Non-functional Requirements

Usability
Acceptance Criteria:

● A new user should be able to understand how to place a bid, ask, purchase or
sell a product after 5 minutes of use without help.

● The user interface should be consistent and give concise and informative
feedback to the user.

Performance & Scalability
Acceptance Criteria:

● The system should load a page in 5 seconds or less.
● The system should push new bids and asks to users viewing the product page in

real-time without a page refresh. Real-time is defined as less than one second.
● The database schema should adhere to MongoDB’s guidelines for scalability.

Security
Acceptance Criteria:

● The system must store passwords in a secure way in which they can never be
read by anyone.

● The system must require users to authenticate themselves before placing bids,
asks and orders.

Portability
Acceptance Criteria:

● The system can be accessed and used with the four largest desktop browsers:
Chrome, Internet Explorer, Firefox and IE/Edge. [15]

● The system can be accessed and used with the two largest mobile browsers:
Safari and Chrome

32

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

3.2. Design

3.2.1. Use Case Diagrams
Figure 3.1 provides a high level view of all of all of the actions a user can perform with
the system. Additionally, key use cases have been expanded in their own separate
diagrams below.

Figure 3.1: Use case diagram for the proposed system.

33

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Buy from an Asker
When an ask is accepted, there is no need to send a message through PubNub, as the
ask is closed in the database so it cannot be fulfilled again.

Figure 3.2: Flowchart for buying a product from another user’s previously placed asking price.

34

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Sell to a Bidder
When an bid is accepted, the order is not immediately completed. The buyer is sent a
notification to confirm their shipping address and payment details. The shipping address
is passed onto the seller.

Figure 3.3: Flowchart for selling a product to another user for the user’s previously placed bid.

35

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Place a New Bid

Figure 3.4: Flowchart for placing a bid on a product.

36

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Place a New Ask

Figure 3.5: Flowchart for placing an asking price for a product.

37

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

3.2.2. User Interface Design
The user interface has been designed referring to the requirements specification given
in section 3.2. The mockups have been created using a prototyping tool called
JustInMind. Ben Shneiderman defined 8 golden rules for user interface design in the
book Designing the User Interface: Strategies for Effective Human-Computer Interaction
[16]:

1. Strive for consistency
2. Enable frequent users to use shortcuts
3. Offer informative feedback
4. Design dialogues to yield closure
5. Offer simple error handling
6. Permit easy reversal of actions
7. Support internal locus of control
8. Reduce short-term memory load

These guidelines applied in the creation of the following user interface designs. These
designs were showed to my supervisor in a meeting for approval and additional
feedback.

38

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Homepage
This is the first page that the user will be shown when they open the system. This
means that all of the features of the system must be accessible from here. The designs
all include a consistent navigation bar at the top of the page, which remains unchanged
for the vast majority the views in the system.

The page provides the user with a prominent dialogue in the centre of the page
explaining exactly what the system is designed to do, and includes a search function in
a prime location in the page. Below the fold, the system displays a grid of products in
the system. These grid elements contain concise and useful information for the product
and link to the full product page:

Figure 3.6: User interface design for the homepage. Left: full page, right-top: closer view of the
navigation & search, right-bottom: closer view of the product grid.

39

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Product page
The product page maintains a consistent style and navigation bar as the homepage.
The page is split into four sections: product information, buying options, selling options
and historical market data. The market history originally was placed above the buy and
sell options, however in the revised design it is placed below the fold to push the buy
and sell options to a more prominent location. The page will give feedback for things
such as placing new bids or if the user is the current highest bidder.

Figure 3.7: User interface design for the product page.

40

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Login
The login page contains a centred panel with with a simple username and password
form.

Figure 3.8: User interface design for the login form.

41

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Register
The register page maintains a consistent style to the login page however it has red
colour coding as opposed to the login page green. This page is as simple as possible to
make it easy to use, error messages are flashed at the top of the form.

Figure 3.9: User interface design for the account creation/register form.

42

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Profile area
The profile area maintains the consistency of the navigation for the system. Additionally
the profile area has a side navigation to separate the functionality to enable easy and
clear navigation.

Figure 3.10: User interface design for managing your bids in a user profile.

Figure 3.11: User interface design for managing your asks in a user profile.

43

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Figure 3.12: User interface design for the account settings page.

44

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

3.2.3. Application structure
The Model-View-Controller software architecture is the most common software
architecture used for web applications [17]. The architecture separates the application
logic into three separate parts: models, views and controllers.

● Models define all of the data that the application uses, for example they
define the database structure and can sometimes handle input validation.
Views get any data they need from the Models.

● Views control any user interface elements in the application, they can
send user input to the appropriate controller.

● Controllers contain the bulk of the application logic. They often take user
input and handle it as well as manipulate data from the models.

Figure 3.13 displays the way that the three components of the MVC architecture
separate the application logic and interact with each other:

Figure 3.13: Diagram of the Model-View-Controller software design pattern. Courtesy of Mozilla
Contributors [17]
The main advantage of this architecture is the way that it decouples all of the key
application logic from the data handling and user interface, this makes the the
application easier to develop, maintain and extend.

45

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

The Final Application Structure
The final design for the application structure was to implement the Model-View-
Controller architecture to make implementing the system as simple and as fast as
possible. The MVC architecture enables maintaining states, which makes implementing
authentication and authentication sessions for users much less complex. As an
extension to the core application, in order to facilitate the ability to get data in real-time
using AJAX with Javascript, I planned to create a small RESTful style API for the
product data. Whilst my initial idea for the application structure was to create a fully
RESTful application with a JavaScript frontend using a MEAN stack [18], for the final
design I decided against this because of the JavaScript front-end requirement, which
would introduce unnecessary complexity and reduce client compatibility.

The structure design utilizes the model-view-controller architecture to address the the
second and third aims of the project defined in section 2.2:

● implement the system in a way that is maintainable, extensible and compatible
● create a secure, robust and scalable system

The MVC architecture is a suitable pattern to use to achieve this aims as it separates
the program into single-responsibility modules that communicate with one another. This
has a number of advantages: it gives the system inherent support for asynchronous
operations, allows for parallel development which makes development faster and makes
the code easier to comprehend and thus maintain and extend the program.

The product API functions as an entirely separate part of the rest of the system,
however it queries the same database. It enables a client-side script to use AJAX to
request for data in JSON format, it does not enable any creation, deletion or
modification of product data. This means that there is no need to implement additional
authentication middleware for the API which lets me keep things as simple and efficient
as possible. The advantage of this approach is that it allows me to use a more
traditional web application for the vast majority of the system which does not need any
live data, making it easier to develop, maintain and extend the system.

As explained in section 2.6.2, the PubNub data stream network is used to push a newly
placed bid, ask or order on a product to all of the clients currently viewing the product
page. When a client opens a product page they are automatically subscribed to the
PubNub channel for the given product. Each product has its own PubNub channel
which it uses to these events to the subscribers and update the charts.

46

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Figure 3.14: Diagram of the process of placing a bid and informing all users in real-time.

Figure 3.14 shows the process of placing a bid on a product. In this example, there are
two users viewing the same product page Clients 1 & 2, and Client 1 places a bid on the
product. The process is exactly the same for posting asking prices and consists of the
following steps:

1. The first stage of the process is the client-side validation using JavaScript, before
the bid is sent to the server, the client uses JavaScript to check if it is a valid
input and whether the new bid will become the highest bid. If the input is valid
then the bid is submitted to the server.

2. When the server receives the bid, it will validate the bid on the server-side for
security purposes and then it will save the bid to the MongoDB database.

3. After saving to the database, the server then publishes the bid to the PubNub
data stream network.

4. PubNub pushes the bid object to all of the clients viewing the product, which
updates the product page

5. Finally, if the bid is the new highest bid, the client will send a new request to the
product API to get the new bid so that the user can immediately sell to the bid.

47

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

The PubNub API uses the publish-subscribe pattern so it gives separate keys for
subscribing to a channel and publishing messages to a channel. This ensures that the
server is the only party who can publish to the network, so all of the messages
published are valid messages from the server. Additionally, as PubNub uses the same
JSON format for messages as MongoDB use, it eliminates the need to do any data
processing to the bid, ask or order data before publishing to the network.

Implementing the MVC architecture in this system would produce a file structure for the
application like so:

LiveStore

├── Models

│ ├── Ask

│ ├── Bid

│ ├── Order

│ ├── Product

│ └── User

├── Views

│ ├── Home page

│ ├── Product page

│ ├── Log in/Sign up

│ ├── Admin panel

│ │ ├── Admin Home

│ │ ├── Products

│ │ ├── Orders

│ │ └── Users

│ └── Profile panel

│ ├── Profile Home

│ ├── Products

│ ├── Orders

│ └── Settings

├── Controllers

│ ├── Authentication controller

│ ├── Product controller

│ └── PubNub controller

└── Routes

├── Index routes

├── Admin routes

├── Profile routes

└── API routes

Figure 3.15: The proposed file structure of the application.

48

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

3.2.4. Database Design
I have chosen to use MongoDB for my database for the reasons stated in Section 2.6.3.
MongoDB is a document oriented NoSQL database - which makes the design
considerations different from traditional relational database systems such as MySQL or
Oracle. As I have no previous experience with document-oriented databases I have
referred to guidance given in a the MongoDB documentation[19] and a white paper
published by MongoDB entitled ‘Performance Best Practices for MongoDB’ that offers
detailed guidelines for schema design that will perform well at scale[20]. I have included
notable guidelines that I have referred to in my schema designs:

1. Store all data for a record in a single document
2. Avoid large documents
3. Avoid large arrays in indexed fields
4. Avoid long field names
5. Use caution when considering indexes on low cardinality fields
6. Eliminate unnecessary indexes

The schema has been optimised for performance over storage space, as storage is
much cheaper and abundant than processing power, therefore the schema does, at
times, contain duplicate data. The database design consists of 5 collections: Users,
Products, Asks, Bids and Orders. Figure 3.16 shows the document schemas and the
relations between each of the collections. It is important to note that MongoDB is not a
relational database system therefore these relations are implied, they are not actually
enforced by the database. They will be, however, enforced by Mongoose, the
middleware that defines the schemas and relationships between the data, and what the
system will use for querying the database.

The Users collection stores a document for each registered account on the system, this
single document stores all of the data that is associated with any user. In order to
optimise the queries when loading pages, the schema contains an array of reference
IDs for all of the bids, asks and orders that the user has created, which allows the
system to get the data using the Mongoose .populate() function without having to
search through every bid, ask and order for the user ID.

The design also defines a schema for storing addresses, however addresses are not
stored as a separate collection, they are stored as subdocuments to user and order
documents. This allows the user to save their street to their profile for a quicker
checkout process.

49

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

The Products collection stores all of the data associated with the product. Similarly to
the Users collection, the schema includes all of the data necessary for the product page
to load quickly using the .populate() function, making sure that a complex database
query does not bottleneck the loading speed for the product pages. Additionally, for
query efficiency, the database does not store the actual image files, as MongoDB
enforces a 16 megabyte maximum document size and because this go against the
guidelines defined by MongoDB for efficiency. Instead, the database stores an array of
file paths to the images, which are stored in a public directory on the server.

The Asks, Bids and Orders collections store all of the ask, bid and order data for each
product. Whilst PubNub is used to communicate this data, PubNub does not enable as
powerful querying functionality as MongoDB and does not, by default, store this data
permanently, so it is necessary for a database to be implemented to store this data in a
permanent and accessible way.

The database schema designs have given all of the collections and attributes concise,
appropriate and consistent names and data types to help comprehension during the
implementation.

50

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Figure 3.16: Overview of the database schema design. In the interests of simplicity, some
relationships arrows have been omitted to increase readability.

51

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

3.3. Risk Analysis
It is vital to conduct a risk analysis before the implementation begins to minimise the
potential for threats to impede progress on the project. Identifying potential risks
enables them to be monitored and sensible contingency plans to be put in place.

 Risk Likeli-
hood

Impact

1 Data loss Low Large

2 Overly optimistic
Scheduling/Estimation

Moderate Moderat
e

3 Absence or Illness Low Large

4 Unclear specification Low Moderat
e

5 Changeability Low Moderat
e

6 Insufficient skill set Moderate Moderat
e

Figure 3.17: Table of the risks associated with the project.

 Small Impact Moderate Impact Large Impact

Low Likelihood 4: Unclear
specification
5: Changeability

1: Data Loss
3: Absence/Illness

Moderate
Likelihood

 2: Optimistic
schedule
6: Insufficient skill
set

High Likelihood
Figure 3.18: A risk analysis map for the identified risks.

52

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

1. Data Loss
Steps to prevent:
Use the Computer Science School’s GitLab system for version control and as a code
backup. Additionally, use an off-site cloud storage solution to store periodic backups.

Contingency:
Restore from a previous backup or if not possible accept the risk.

2. Overly Optimistic Schedule
Steps to prevent:
Discuss progress updates with supervisor during regular meetings, Decompose
sections into smaller, more attainable tasks.

Contingency:
Prioritise the functional requirements to product a minimum viable product. Focus on
key aims for deliverables first and avoid feature-creep.

3. Absence or Illness
Steps to prevent:
Unpreventable, monitor absence and communicate with supervisor.

Contingency:
Re-organise tasks to deliver a minimum viable product that satisfies the functional
requirements.

4. Unclear Specification
Steps to prevent:
Evaluate and adjust specification and design where necessary. Do not strictly adhere to
the initial plan if a better option becomes available.

Contingency:
Communicate with supervisor frequently and adjust the specification to clarify any
issues.

53

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

5. Changeability
Steps to prevent:
Communicate requirements with supervisor effectively. Keep the design and
implementation as simple as possible. Conduct regular code reviews and refactor
accordingly.

Contingency:
Dedicate time to implement the changes in functionality or adjust the specification to
sacrifice other functionality.

6. Insufficient Skill set
Steps to prevent:
Choose tools and methods that are familiar, if not then choose tools with good support
and documentation. If required use resources from the internet or university library to
learn how to use required tools and technologies.

Contingency:
Adjust the aims and scope of the project accordingly and communicate concerns and
changes to supervisor.

54

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

4. Implementation
Note: The full code listings are provided in addition to the report. Instructions are included in Appendix A.

This part of the report details the approach used to implement the program.
Implementation was done entirely using Sublime Text 3, and for testing and debugging I
used the following tools:

● MongoDB Compass Community Edition to view and query the database
● Postman to issue HTTP requests for testing
● Morgan NPM package to log HTTP requests
● Google Chrome and Mozilla Firefox developer tools

4.1 Authentication
Passport is an authentication package for NodeJS that abstracts the handling of
account creation, authentication and sessions. It also enables multiple different types of
authentication strategy from either a local database or from third party accounts such as
Google or Facebook [21] . When handling local database accounts Passport handles
the storing of passwords securely by salting and hashing them. As you can see in
Figure 4.1, the User.Register Passport function takes the password as a separate
argument after the user object to salt and hash before insertion:

Figure 4.1: Code to register an account with the passport module.

55

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

It is important to ensure that the username provided is unique, so the database must be
queried first to confirm this. The process.nextTick() function ensures that the
query function is processed synchronously, breaking the event loop and making the
program wait for the response to ensure that the block is complete to ensure there are
no collisions [22]. Figure 4.1 shows that the process of creating a new user in the
database is handled synchronously.

For protected routes, such as those to the user and admin areas, the UserController
defines a simple middleware isLoggedIn function. This middleware is used for all
protected routes in the system and redirects unauthenticated users to the login form and
sends the referring page so that the user can be sent back to where they were before
logging in. Figure 4.2 shows the middleware function in the UserController class (top)
and an example of its usage in the routes for placing bids and asks (bottom).

Figure 4.2: Authentication middleware to check if a user is logged in. Top: the middleware
function to check if a user is logged in. Bottom: the middleware function is called in the route
declaration.

The system also facilitates flash messages for the login and register pages to provide
useful feedback for informing the user of events and errors as suggested by the user
interface design (section 3.2.2). Figure 4.3 displays an example of this: the login page
informing the user that the login credentials provided were incorrect.

56

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Figure 4.3: Flash message feedback example on the login page.

4.2. Placing a Bid or an Ask
For the same reasons as the authentication, placing bids and asks must be done
carefully to ensure that no data integrity errors occur. When placing a bid this is done by
first querying for an existing bid placed on the product by the user (figure 4.4). Only
once this query is complete the place or update bid actions is completed. The method is
identical for placing an ask.

To do this, the BidController gets the user document and finds all of the user’s bids that
are both open and match the product ID. If a matching bid exists then it will simply
update the price and date for the existing bid. If a bid is not found then the system will
create a new bid document and save it to the bids collection and the product and user
documents. After the bid has been created or updated, the controller then passes the
bid object to the PubNubController (section 4.3) which then publishes a message to
PubNub. As stated earlier, the process is identical when placing asks.

Figure 4.4: The query to check if a user has an existing open bid on the given product.

57

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

The product page gives four options for the user to buy or sell the product: place a bid,
buy immediately from a current asking price, place an asking price or sell immediately to
a current bidder (Figure 4.5). The user interface clearly displays the four options the
user has and utilises colour and alignment to distinguish between buying (green) and
selling (red) options, the purchase options are always at the top and the sell options at
the bottom.

Figure 4.5: The buying and selling options presented to the user on the product page

The user interface displays informative colour coded flash messages in a promement
position on the page when events or errors occur. These messages include:
successfully placed bid or ask, you are currently the highest bidder or lowest asker and
form validation errors.

Figure 4.6: An example displaying position and styling of flash messages.

58

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Additionally, if given the appropriate permissions, the system will the browsers in-built
push notification functionality where supported to send users who have the product
page open a notification when a new lowest bid or a new highest ask is placed on the
product (figure 4.7).

Figure 4.7: An example of the system asking for permissions (left) and displaying a push
notification for a new highest bid that has just been made (right).

4.3. PubNub
The PubNubController class contains all of the code that initializes the PubNub
channels and creates and sends messages to the appropriate PubNub channel for each
product, it is also responsible for creating the Eon object for the charting engine to plot
the data. This class is used once the bid, ask or order has been validated and saved to
the database. The Schema for every message published is shown in figure 4.8.

Attribute Comments

eon This contains the data used for charting in
the format required by the Eon charting
system.

bid_id or
ask_id

Stores the bid_id or ask_id so the system
can be extended to enable PubNub to
automatically place orders in the future.

price The price value for the bid or ask.

time The timestamp.

user The ID of the user who placed the bid or
ask.

Figure 4.8: The schema for messages published to PubNub.

The other responsibility of the PubNubController is to set up the channels for each
product, including the storage of messages and the security configuration, the creation
of messages and the publishing of messages.

59

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

4.4. Security & Validation
Security and validation is a primary concern for developing web applications, even more
critical with ecommerce systems. While the constraints (section 2.3) do mention that the
timeframe of the project does not allow for full security testing, during the
implementation I have taken steps to create a secure application. Section 4.2.1
describes the authentication subsystem for the project in more detail, however the while
the authentication of users is the primary concern in creating a secure application, there
are many other security concerns to address.

Using existing frameworks and modules for securing applications is typically best
practice, as creating custom security measures for your application can take an
enormous amount of time and be extremely dangerous. Many popular frameworks,
including Express & NodeJS, have proven security track records with security
researchers and open source contributors with far more experience and knowledge
always working to keep the framework secure.

Securing the data in transit is a vital security measure for web applications, at present
the system does not use HTTPS as it has not been deployed, however if and when it is
deployed this is a necessary step. An effective way of doing this would be to use an
NGINX web server to handle HTTPS traffic and run the NodeJS application on top of it.
A security feature currently implemented in the system is the creation of a Content
Security Policy (CSP) to detect and mitigate attacks. The helmet package in NPM
abstracts much of this process, and can help against attacks such as cross site
scripting.

The system can never trust the integrity of any request coming from a client so it is vital
that data be cleaned and validated server-side before it is processed. Throughout the
system, user input is minimised to the essential, any data that can be retrieved from
elsewhere is done so. Where user input is essential, the input is validated with positive
validation, as an additional step, mongoose validates the data being inserted to the
database. Figure 4.9 displays one example of pre-save validation carried out before
updating the database. Additionally, the BidController and AskController classes
perform some basic validation on the bid and ask forms to check if the input is a valid
number and it is greater than 1.

60

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Figure 4.9: Product schema pre-save validation function for inserting new documents
into the Products collection.

4.5. Placing Orders
As explained in section 4.2, there are four options presented to the user on the product
page (figure 4.5). Two of these options enable a user to immediately place an order to
either purchase or sell the product, these options are only available if there is currently
an open ask or an open bid respectively. The orders are placed by either purchasing the
product for the lowest current asking price, or selling the product to the highest current
bidder.

To purchase an item from the lowest asker, the user simply needs to click on the buy
now button. This button takes the user to a checkout page that contains the order
details and an address input form, to increase the speed of the checkout process the
address form will be automatically populated if the user has an address saved to their
profile. The limitations of the project (section 2.3) mean that the system does not take
payment information at this stage. Once the user confirms the order the seller will
receive a notification in their profile area (figure 4.10).

Figure 4.10: Notification sent to a seller when their asking price is accepted by a buyer.

61

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

To sell an item immediately, the process is exactly the same but in reverse. The seller
who accepts a bid will be taken to a confirmation page displaying the details of the
order. The buyer/bidder will be notified in their profile area in the same way.

The OrderController class is singley responsible for all of the functionality for placing
orders. It separates orders into two classes: buy and sell, because the process is very
slightly different for each. The class places each order synchronously to ensure that no
collisions occur. The first step of placing the order is always to set the associated bid or
ask to closed to ensure there can only ever be a one-to-one bid/ask to order
relationship. The class then does the following:

● Create the order document and save to the Orders collection.
● Update the orders array in the product document.
● Update the bought-orders array in the buyer’s document. Adds a

notification to the users profile.
● Update the sold-orders array in the seller’s document. Adds a notification

to the users profile.
● Finally, it redirects to an order success page.

4.6. Problems Encountered
The way that NodeJS queries the database asynchronously means that if improperly
utilised the program can have null pointer errors. This means careful consideration of
the order of operations is required to ensure robustness and data integrity. This problem
can be exacerbated by MongoDB’s lack of transaction management. Some features of
the system had to be implemented synchronously, notably inserting critical data into the
database, such as user account creation (Section 4.1) and placing orders (Section 4.5).
This problem was overcome by using synchronous queries where needed to ensure
data integrity.

Implementing the user interface for the system, particularly the product page, presented
some challenges, particularly when trying to facilitate the required real-time data
communication features in a robust way. Due to my lack of experience with JavaScript
on the client, particularly with AJAX, this section of the implementation took much longer
than planned. To speed up the development process I used the jQuery framework to
handle the AJAX requests. Additionally, for the styling I relied on Bootstrap to make the
website design responsive and usable on mobile.

62

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

5. Results & Evaluation

5.1. Changes to the Initial Plan

5.1.1. Application Structure
The initial application structure design specified just three controller classes:
ProductController, UserController and PubNubController, however over time these three
controllers grew unnecessarily large and as a result I refactored the code by separating
them into the following 7 controller classes:

● AdminController - contains middleware that checks if the user is an admin.
● UserController - contains all of the methods for registration, logging in,

logging out and middleware to check if the user is logged in.
● ProductController - contains the code to create, read, update and delete

products.
● AskController - handles all validation for placing asks, stores the ask in the

database and sends data to the PubNubController class.
● BidController - handles all validation for placing bids, stores the bid in the

database and sends data to the PubNubController class.
● OrderController - creates order documents and closes the associated bid

or ask.
● PubNubController - contains the code to create and publish the new bid,

ask and order messages to the appropriate PubNub channel.
This new structure makes the application much easier to develop, maintain and extend,
addressing the third aim of the project (section 2.2). Each controller class now better
follows the single responsibility principle of object oriented design [23] [24], as each one
now handles only one specific area of the application logic.

5.1.2. PubNub Configuration
The initial plan for using the PubNub network for live communication was to have just
two channels: bids and asks, through which the appropriate messages for all products
would be sent. During the implementation this plan changed for two reasons: to reduce
the amount of messages sent and to easier facilitate the graphing of the data. The
revised plan was to have two channels for each product in the system. PubNub does
not have a limit for the amount of channels, however it does charge more based on the
amount of messages that are sent, so the new method of implementation actually
increases efficiency massively by reducing the amount of messages broadcast.

63

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

The original plan would have distributed every single bid and ask message to every
client currently connected to the system. The vast majority of these messages would
have been ignored by the clients as the message only pertains to users on the specific
product page. Additionally, separating the messages into product-specific channels
allows easier implementation of real-time graphs with the PubNub Eon charting engine.
This new usage configuration for PubNub increases efficiency, performance and
scalability which directly addresses part of the second specified aim of the project
(section 2.2) for the system to be robust, performant and scalable.

5.2. Testing Functional Requirements

5.2.1. Exploratory Testing
The first stage of testing the implementation was to conduct exploratory testing. While
this was done informally throughout the development process, it is still vital to do this
after development is complete to identify any bugs and edge cases. This testing some
critical bugs that were address before continuing onto the test cases.

The most frequent bugs identified were those associated with input validation. These
appeared in the place bid and ask functionalities as well as the add product functionality
in the admin panel. These bugs were addressed before completing the test cases.

Another bug that was identified through exploratory testing was in the bid and ask
update code on the client side. Due to the asynchronous nature of AJAX, if the request
was slow, variables could occasionally be undefined if the AJAX request was taking too
long. This was fixed by creating a function to update the page and calling that function
in the AJAX callback so the page waits for the data first.

64

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

5.2.2. Test Cases
To evaluate the completed system I created a number of test cases and included them
in full in Appendix B. The test cases were devised to test each of functional
requirements (section 3.1) to objectively evaluate if the implementation was a success.
The results have been tabulated and summarised in figure 5.1:

ID Title/Purpose Pass/Fail Comments

1 User creation Pass

2 User authentication Pass

3 Admin authentication Pass

4 Adding a product Pass

5 Viewing the product page & pricing data Pass

6 Placing a bid Pass

7 Placing an ask Pass

8 Sell to the highest bid Pass

9 Buy for the lowest ask Pass

10 View bids and asks in user profile Pass

11 View orders in user profile Pass

12 Update a product Fail Time constraints forced me to
de-prioritize this requirement

13 Search products Pass Simple regular expression search.

14 Notifications in profile for orders Pass

15 Push notifications for highest bid and
lowest ask

Pass Uses browser push notification
features to achieve this.

16 Product page updates in real-time Pass

Figure 5.1: Summary of the results of the use case testing carried out. The full tests are
included in Appendix B.

As can be seen from figure 5.1 the vast majority of test cases carried out passed - all of
them apart from one. Additionally, every Must and Should requirement specified in
section 3.1 was successfully fulfilled. I have attributed this success to the organisation

65

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

of the requirements in the planned chronological order of implementation. This
prioritisation mitigated the risks of scope creep and gold plating (section 3.3).

The only test case that failed was test case 12. This test case pertained to requirement
3.5: Update Product Details. While the failure of this requirement is disappointing, the
requirement is a Could requirement and the very last requirement in the list. This failure
has been attributed to time constraints in the development of the project due to the
problems encountered implementing the user interface (Section 4.6).

5.3. Testing Non-Functional Requirements

5.3.1. Usability
One of the constraints of the project (Section 2.3) was the inability to do a proper
usability evaluation of the completed system. Unfortunately this means that the usability
testing is outside of the scope of the project.Nevertheless, the user interface designs
were guided by and have made considerations for human computer interaction
principles defined by Designing the User Interface: Strategies for Effective
Human-Computer Interaction [16] (Section 3.2.2). The interface does fulfil the second
requirement for usability, as it is consistent across the whole system and does give
concise and informative feedback to the user.

5.3.2. Performance & Scalability

Performance
The Morgan debugging package used for development logs the time that the system
takes to respond to a request and the HTTP response code it returns. This can give a
rough estimate of the efficiency of database queries and the application logic, this can
identify any outliers to be addressed. Additionally, the requirements specification for
performance (Section 3.1.5.) state that the system should load every page within 5
seconds. To test this requirement, I used the AppTelemetry [25] plugin for Firefox to
time the loading of pages whilst testing the application and had an average page load
time of 1.59 seconds and a maximum load time of 3.12 seconds over 47 page loads.

The other requirement specified for performance is for new bids and asks to be pushed
to the other clients viewing the product page within one second, without having to
refresh the page. While this is difficult to test objectively, PubNub guarantees delivery of
messages in 250ms and the product page does indeed update the values without
refreshing the page.

66

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Scalability
Every effort has been made in the design and implementation of the system to make
sure it will scale well. This is a key non-functional requirement for the system (Section
3.1.5), because if the project does not scale it cannot be used as a base to be extended
into a deployable system. Unfortunately the scope and timeframe of the project does not
give me the resources to test this fully, however the following features and design
decisions demonstrate an awareness of the requirement for horizontal scalability.

The system uses the MongoDB database management system which has a proven
track record of being highly performant at massive scales, using its sharding technology
to distribute the database horizontally across clusters of servers. I designed the
database schema following MongoDB’s documentation for schema design best
practices (section 3.2.4).

The key factor in the the decision to use the PubNub data stream network as opposed
to building my own system for real-time communication was because of the
infrastructure that PubNub has in place already. They can provide a massive amount of
infrastructure that can be scaled alongside the application. This robustness and
scalability would take a huge amount of time and resources to implement yourself.

The choice of NodeJS itself was also dictated by its lightweight design and proven
performance at scale (section 2.6.1), its asynchronous design for I/O operations, such
as database queries, allow the program to continue running while waiting for a response
meaning that no processing resources are wasted.

5.3.3. Security
As discussed in greater detail in section 4.4, the system uses PassportJS for handling
all of the user account creation and authentication. Passport salts and hashes the
password using Bcrypt when the account is created so the password can never be
recovered, which is the standard for password storage. A simple middleware function
ensures that protected actions such as placing bids and asks require an authenticated
user. This middleware function will redirect to a login page if the user is not logged in.

While not specified in the non-functional security requirements (section 3.1.5) and the
constraints (section 2.3), the system takes additional measures to the secure the
system. These measures are discussed in section 4.4. The implementation of the
system successfully fulfils the security requirements specified in section 3.1.5.

67

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

5.3.4. Portability
The system has been tested in and is fully functional in Mobile Safari and Chrome as
well as desktop Chrome, Firefox and Microsoft Edge. The system uses only ubiquitous
and widely supported features within JavaScript engines in all popular, modern
browsers. It also uses the Bootstrap CSS framework to create a responsive design that
adapts to the screen size on the device. This means that the implementation of the
system successfully fulfils the portability requirements specified in section 3.1.5.

68

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

6. Future work
Due to the time constraints of the project, there are a number of features that I would
like to implement in the future. The system has been designed and implement to make it
easily extensible and maintainable. This section of the document details some
additional features that could be implemented on top of the current system. Some of the
features have been identified in the project constraints however there are some ideas
that presented themselves during the implementation of the project.

6.1. Payment processing
One of the keys limitations identified at the beginning of the report (section 2.3) was the
inability to provide a method for paying users when purchasing items. Given more time,
I would have liked to complete the system by implementing a method to send payments
by creating a subsystem from scratch or by using a third-party payment processor such
as BrainTree or Stripe, this option would reduce the liability with respect to storing
payment data.

6.2. Product Categories and Variants
The current implementation does not support some of the product catalogue features
that are included in existing ecommerce solutions such as osCommerce (section 2.5.1)
and PrestaShop (section 2.5.2). In the future I would like to implement categories for
products and product variants such as colours or sizes.

The product categories feature could be implemented as an extension by simply adding
a new field to the product document to store category information for each product. This
feature would be simple to implement, product categories could be defined by the
administrator and have various metadata associated with them.

Product variants would be slightly less trivial to implement in the future, the simplest
way of accomplishing this feature would be to store each variant of a product as a
separate product document, and then reference to each variant in an array field. This
would mean that the core functionality for placing asks, bids and orders would not be to
updated to support the new feature.

69

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

6.3. Using the Data
If deployed, the system could potentially be collecting and storing vast amounts of
detailed, temporal data on the value of a given product. If the dataset grows large
enough, mining this data could create some valuable information on the state of the
marketplace for any item, which could be used to provide a range of tools and services
that the system could provide to the user.

The system has an advantage over platforms such as eBay due to the consistency of
the pricing data. To harvest data from eBay you would need to account for all of the
possibilities for different listings, which could make the dataset noisy and incomplete.

The data could be used to accurately determine the value of every product in the
system, the more data it collects the more accurate it becomes. The value of items can
be determined by combining a number of metrics including but not limited to the bid-ask
spread, order volume over time and price volatility.

This data could be used to create a detailed market model for a product that could
analyse trends and estimate how much the product could be worth at any time.
Additionally, the model could then be applied to predicting the prices of similar products
in the marketplace with machine-learning technologies. For example: the system could
use the model for previous iPhones to predict the best time window to purchase the
product for the best deal. This information could be made available to the user on the
product page.

6.3. Portfolios
As the system currently stores data on all of the products that users have placed an
asking price for and the products that they have purchased, it is trivial to generate, for
each user, a portfolio of the products that they own. The system could then calculate the
value of each product and the portfolio as a whole. Additionally, given the original retail
price of products or the price the user purchased a product at, the system could
calculate metrics such as return on investment for the portfolio. This functionality would
open up other options for interacting with the marketplace. As it is essentially the same
as the stock market, users could potentially invest in items by buying and selling futures
or shorts.

70

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

6.4. Monetisation Strategies
Section 2.4 provides a number of potential ideas for the business case for the system. I
have identified three possible methods to monetise the deployment of the system:
Commission, Membership and charging for placing bids and asks. Implementing a
commission fee for completed orders would likely be the best course of action to
minimise the up-front investment. This could be done simply in the order code by
calculating a percentage or flat fee and adding it to the total. Requiring users to make a
payment before being able to use the system could turn people away.

6.5. Usability Testing
The initial plan document stated that an aim for the project was to design and create a
user interface for the system that would be evaluated by usability testing. During the
implementation of the project the aims were adjusted away from user interface design
and usability testing due to the time constraints (Section 2.3.2). Given more time, a key
requirement for the development of the system would be to design a user interface
using HCI and UX principles and to carry out a full usability assessment of the system.

71

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

7. Conclusion
Throughout this document, I believe that I have demonstrated that the project has been
completed successfully. Section 2.2 defined 5 core aims derived from the motivation for
the system, all of which I believe have been proven to be satisfied. The system provided
is a good first step to a system that could be deployed in the future.

The evidence for achieving the first aim - to create an application that enables a user to
purchase, sell, bid or ask on a product - is the system’s completion of the test cases. All
of the test cases apart from one passed (section 5.2.2) and the system fulfills the vast
majority of the requirements specified (section 3.1), including all of the must
requirements. The only requirements that have not been fulfilled are some of the could
and should requirements, additionally, the third aim - the extensibility and maintainability
of the system - makes it possible to easily complete these requirements in the future.
Additionally, I believe I have shown through the testing carried out that the application
satisfies the fourth aim of the project - to facilitate real-time communication of bids and
asks in real-time.

Throughout the design of the system, an awareness of the need for the security,
robustness and scalability has been demonstrated. While unfortunately I lack the time
and resources to test these attributes, I believe the decisions made during the design
and implementation of the system verify the achievement of the second aim - to create
a secure, robust and scalable system, without compromising usability or performance.

The fifth and final aim of the project was to design and implement a simple and usable
user interface for the system. While the project scope did not include full usability testing
and analysis the interface was designed with the consideration of good HCI principles
and the designs provided were approved by the project supervisor.

There are some issues with the system that have been identified, at it is by no means a
product ready for deployment, however the completed work is a good base that can be
extended and improved upon in the future. Additionally, I believe I can take many of the
teachings of the project into any other projects I undertake in the future.

72

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

8. Reflection on Learning
In this section I will identify and critically evaluate some areas of success and some
areas of improvements around the project. Using the double-loop learning methodology
I have identified the areas of the approach that were successful and could be applied in
the future and the areas that were not successful, where the approach could be altered.

At the beginning of the project, I had no previous knowledge or experience with many of
the tools and technologies used: NodeJS, MongoDB, PubNub etcetera. The completion
of this project allowed me to learn about these technologies and provided an opportunity
to apply the new knowledge I had learned to a project with a purpose. This has enabled
me to develop technical skills and confidence that I can transfer to new challenges in
the future.

Whilst the project overall was a success, with hindsight I would change some of my
actions during the initial stages of the project. I spent a large amount of time trying to
decide what languages and frameworks I would use for the implementation, and ended
up returning to my original idea. While this did allow me to make an informed decision in
the end, I spent far too much time researching and learning multiple languages and
frameworks that would have been better spent actually implementing the system. It is
important not to get bogged down in deciding on the absolute best approach to a project
if it eats into the time to actually undertake it.

Again, with hindsight, I can see that I did not manage the time afforded to me efficiently.
I feel I made a slow start to the project , in part due to the reason stated previously and
my approach to development was ill-advised. My approach was to complete the
development of the system before beginning the report. While I feel I did manage
development time effectively by splitting the process into subtasks and giving myself
milestones, If I were to do this project again, I would start the development much earlier
and at the same time include weekly subtasks pertaining to the report writing in addition
to development.

During development I found that it was useful to draw flowcharts detailing the
functionality for a subsystem. I did this for many of the subtasks I had defined during the
development. This made the development much easier to accomplish, as when I would
come back to code at a later date, the flowcharts would explain the code in a much
more comprehensible way that commenting could, additionally, I could tick off sections
of the flowchart as they were completed.

73

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Additionally, I believe a key factor toward the project’s success was the regular
meetings with the project supervisor. These meetings provided me with useful feedback
and guidance as well as helped me develop communication skills and project
organisation skills. These meetings required me to set my own deadlines for subtasks
and prioritise tasks appropriately, a skill that I believe will be extremely valuable when
undertaking projects in the future.

Finally, the act of gathering the materials and writing this report has caused me to
develop beneficial skills in researching and presenting said research in a sensible and
structured way. It has given me confidence in my ability to take an initial problem and
research, design, implement, and finally, present my solution to it. This skill can be
transferred into new projects I will tackle in the future.

74

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Appendix

A: Instructions
Provided alongside this document is an archive of the complete code listings for the
project. The instructions for installing and running the system are listed below.

Prerequisites
● NodeJS and NPM installed.
● Optional: your own MongoDB server.

Install & Run
1. Uncompress the archive

Optional: Open config.js and your own values for the MongoDB URI, secret, and
port values.

2. Open a terminal in the folder and enter npm install
3. After the installation is complete enter npm run start
4. Open a browser and navigate to localhost:3000
5. If using the default MongoDB server provided, the following credentials have

admin access:
Username: admin
Password: password

75

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

B: Test Cases:

Test case ID: 1 Purpose: User creation

Environment: Firefox browser, Windows 10

Preconditions: There is not an existing user with the given username or email

Step Action Response Pass/Fail

1 From any page, click on the
sign up button in the nav bar.

The registration page is displayed Pass

2 Enter a username The username field is filled Pass

3 Enter an email The email field is filled Pass

4 Enter a password The password field is filled but not visible Pass

5 Re-enter the password in the
confirmation field

The second password field is filled but
not visible

Pass

6 Click the submit button The login page is displayed with a
success message

Comments:

Related Tests: 2

Test case ID: 2 Purpose: User authentication

Environment: Firefox browser, Windows 10

Preconditions: A user has been created

Step Action Response Pass/Fail

1 From any page, click on the
log in button in the nav bar.

The login page is displayed Pass

2 Enter your username The username field is filled Pass

3 Enter your password The password field is filled but not visible Pass

4 Click the submit button The system redirects to the homepage.
The username appears in the top right of

Pass

76

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

the nav bar

5 Click on the username in the
navbar

The profile page is displayed Pass

Comments:

Related Tests: 1

Test case ID: 3 Purpose: Admin authentication

Environment: Firefox browser, Windows 10

Preconditions: An admin user has been created

Step Action Response Pass/Fail

1 From any page, click on the
log in button in the nav bar.

The login page is displayed Pass

2 Enter your admin username The username field is filled Pass

3 Enter your password The password field is filled but not visible Pass

4 Click the submit button The system redirects to the homepage.
The username and an admin button
appear in the top right of the nav bar

Pass

5 Click on the username in the
navbar

The profile page is displayed Pass

Comments: Currently there is no way to create the first admin user without access to the
database.

Related Tests:

Test case ID: 4 Purpose: Adding a product

Environment: Firefox browser, Windows 10

Preconditions: An admin user is logged in. The tester has a suitable product image on their
machine.

Step Action Response Pass/Fail

1 From any page, click on the The admin settings panel is displayed Pass

77

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

admin button in the nav bar.

2 In the sidebar, click on
products

The products page is displayed, with a
table of all the products in the system.

Pass

3 Click on the add product
button

A form is displayed requesting a title,
slogan, description and an image.

Pass

4 Fill in the form The form fields are filled Pass

5 Select “upload image” and
choose a product image

A file explorer window opens and lets
you choose a file. When a file is chosen
the filename appears in the box.

Pass

6 Click the “add” button The system redirects to the previous
products page. The table now has a new
product in it. There is a green notification
box that says the product has been
added.

Pass

Comments:

Related Tests:

Test case ID: 5 Purpose: Viewing a product’s price data

Environment: Firefox browser, Windows 10

Preconditions: None

Step Action Response Pass/Fail

1 Open the system and
navigate to a product page.
Scroll to the statistics section

The page displays a line graph of bids
and asks, it also displays a table
containing the highest bid, lowest ask,
and the number of bids, asks and orders.
The values update as new bids and asks
come in.

Pass

2 Scroll to the bottom and click
on the bid tab.

The page displays a table of all of the
historical bids placed on the item. The
columns are price, date and status. The
table is searchable and sortable.

Pass

3 Click on the ask tab Similar to the bids tab, the product
displays a table of all of the historical

Pass

78

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

asks placed on the product. The
columns are price, date and status. The
table is searchable and sortable.

4 Click on the orders tab The page displays a table of all of the
previous orders for the object. It displays
the price and the date. The table is
searchable and sortable.

Pass

Comments:

Related Tests:

Test case ID: 6 Purpose: Placing a bid

Environment: Firefox browser, Windows 10

Preconditions: Registered an account but remain logged out until step 3

Step Action Response Pass/Fail

1 Open the system and
navigate to a product page

The product information and image is
displayed and there are 4 options below:
Buy, Bid, Sell or ask

Pass

2 In the place bid form enter
100 into the field and submit.

The system redirects to the login page. Pass

3 Enter login credentials and
submit.

The system redirects back to the
previous product page.

Pass

4 In the place bid form enter 0
into the field and submit.

The system responds with an invalid
input message

Pass

5 Enter -1 into the same field
and submit

The system responds with an invalid
input message

Pass

6 Enter 100 into the same field
and submit

The system responds with a message
saying the bid was placed successfully.

Pass

Comments:

Related Tests:

Test case ID: 7 Purpose: Placing an ask

79

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Environment: Firefox browser, Windows 10

Preconditions: Registered an account but remain logged out until step 3

Step Action Response Pass/Fail

1 Open the system and
navigate to a product page

The product information and image is
displayed and there are 4 options below:
Buy, Bid, Sell or ask

Pass

2 In the place ask form enter
100 into the field and submit.

The system redirects to the login page. Pass

3 Enter login credentials and
submit.

The system redirects back to the
previous product page.

Pass

4 In the place ask form enter 0
into the price field and
submit.

The system responds with an invalid
input error message

Pass

5 Enter -1 into the same field
and submit

The system responds with an invalid
input error message

Pass

6 Enter 100 into the same field
and submit

The system responds with a message
saying the bid was placed successfully.

Pass

Comments:

Related Tests:

Test case ID: 8 Purpose: Sell to a bidder

Environment: Firefox browser, Windows 10

Preconditions: User is logged in. Tester has another user’s credentials who has already
placed the highest bid on the product.

Step Action Response Pass/Fail

1 On the product page scroll
down and click the red sell
now button.

The system redirects to an order
confirmation page

Pass

2 Click the button to confirm
the order details and place
the order.

The user is redirected to a order success
page

Pass

80

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

3 Go to the user profile and
navigate to the orders panel

The sold table in the orders panel shows
the order that has just been placed.

Pass

4 Go to the product page and
go to the orders table at the
bottom

The table displays the price and date of
the order that has just been placed.

Pass

5 Log in to the second user
account (the buyer’s) and
navigate to the profile

The notification panel on the profile main
page shows a notification saying that a
user has accepted the bid and the order
is complete.

Pass

Comments:

Related Tests:

Test case ID: 9 Purpose: Buy from an asker

Environment: Firefox browser, Windows 10

Preconditions: User is logged in. Tester has another user’s credentials that has previously
placed the lowest ask for the product.

Step Action Response Pass/Fail

1 On the product page scroll
down and click the green buy
now button.

The system redirects to an order
confirmation page with order details and
an address form.

Pass

2 Fill out the address and
confirm the order by clicking
the submit button.

The user is redirected to a order success
page

Pass

3 Go to the user profile and
navigate to the orders panel

The bought table in the orders panel
shows the order that has just been
placed.

Pass

4 Go to the product page and
view the orders table at the
bottom

The table displays the price and date of
the order that has just been placed.

Pass

5 Log in to the second user
account (the seller’s) and

The notification panel on the profile main
page shows a notification saying that a

Pass

81

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

navigate to the profile user has accepted the ask and the
bought the product.

Comments:

Related Tests:

Test case ID: 10 Purpose: View your own bids & asks

Environment: Firefox browser, Windows 10

Preconditions: The user is logged in. The user has placed at least one bid or ask in the
past.

Step Action Response Pass/Fail

1 Log in to the system The system redirects the user to
homepage.

Pass

2 On the navigation bar, click
on the username.

The system displays the user profile
area.

Pass

3 From the profile page sidebar
click on the bids & asks link

A page is displayed with two tables, one
for bids and one for asks. The tables are
paginated, sortable and searchable.

Pass

Comments:

Related Tests:

Test case ID: 11 Purpose: View your orders

Environment: Firefox browser, Windows 10

Preconditions: The user is logged in. The user has placed at least one order in the past.

Step Action Response Pass/Fail

1 Log in to the system The system redirects the user to
homepage.

Pass

2 On the navigation bar, click
on the username.

The system displays the user profile
area.

Pass

82

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

3 From the profile page sidebar
click on the orders link

A page is displayed with a two tables of
all of the orders that you have bought
and sold.

Pass

Comments:

Related Tests:

Test case ID: 12 Purpose: Update a product

Environment: Firefox browser, Windows 10

Preconditions: Admin user is logged in.

Step Action Response Pass/Fail

1 Login and navigate to the
admin panel

The system redirects the user to the
admin homepage.

2 Navigate to the products
page and click the edit button
on a product in the table.

The system displays a form with the
product name, slogan and description
fields filled in.

Pass

3 Edit the name field The field input changes. Pass

4 Upload a different image There is no option to upload an image on
this page.

Fail

5 Submit the form The system redirects back to the product
table page and displays a success
message

Pass

Comments: This case fails as the form does not give the option to change the product
image.

Related Tests: 4

Test case ID: 13 Purpose: Search for a product

Environment: Firefox browser, Windows 10

Preconditions: None

83

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Step Action Response Pass/Fail

1 In the search field on the
home page, search for the
term “phone” and submit

The system redirects to a page with
search results. There is one result for
iPhone X.

Pass

2 Click on the first result The system redirects to the iPhone X
product page

Pass

Comments: The search functionality is functional however it is not fully featured.

Related Tests:

Test case ID: 14 Purpose: Notifications for orders in profile

Environment: Firefox browser, Windows 10

Preconditions: Two user accounts, one of which has placed the lowest ask for a product

Step Action Response Pass/Fail

1 Log into the system and
navigate to the product page.

The product page is displayed with an
option to buy for the lowest ask.

Pass

2 Click on the buy now button
and place the order

The system shows an order confirmation
and then an order complete page.

Pass

3 In another window, open the
system and log in to the user
who placed an ask.

The system redirects to the home page. Pass

 Navigate to the user profile
area

The system shows the profile area with a
notification section. There is a
notification saying that the product has
been bought and the ask fulfilled.

Pass

Comments:

Related Tests:

Test case ID: 15 Purpose: Push notifications for new high bids and
low asks

84

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

Environment: Firefox browser, Windows 10

Preconditions: Two windows with the system open. Allow notifications when requested

Step Action Response Pass/Fail

1 In one window, login to the
system and navigate to a
product page.

The system displays the product page Pass

2 In the other window, navigate
to the same product page
and when prompted click
allow notifications.

The system displays the product page. Pass

3 In the first window with the
user logged in, place a new
highest bid.

The page refreshes and the page now
displays a message saying the bid has
been placed and the user is currently the
highest bidder. In the other window a
notification appears saying that there is a
new high bid.

Pass

4 In the first window with the
user logged in, place a new
lowest ask.

The page refreshes and the page now
displays a message saying the ask has
been placed and the user is currently the
lowest asker. In the other window a
notification appears saying that there is a
new low ask.

Pass

Comments:

Related Tests:

Test case ID: 16 Purpose: Product page updates in real-time

Environment: Firefox browser, Windows 10

Preconditions: Two windows open on the same product page, one user logged in.

Step Action Response Pass/Fail

1 In one window, login to the
system and navigate to a
product page.

The system displays the product page Pass

2 In the other window, navigate The system displays the same product Pass

85

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

to the same product page.
Scroll to the bottom to view
the price graph

page.

3 In the first window with the
user logged in, place a new
bid.

The page refreshes and the page now
displays a message saying the bid has
been placed. The price graph in the
other window updates to show the new
bid price.

4 In the first window with the
user logged in, place a new
ask.

The page refreshes and the page now
displays a message saying the ask has
been placed. The price graph in the
other window updates to show the new
ask price.

Comments:

Related Tests:

86

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

References
[1] Netimperative 2016, 15m Brits have an old mobile phone gathering dust in drawers
at home [Online]. Available:
http://www.netimperative.com/2016/12/15m-brits-old-mobile-phone-gathering-dust-draw
ers-home [Accessed: 08- May- 2018].

[2] Node.js Foundation, Overview of Blocking vs Non-Blocking, 2018. [Online].
Available: https://nodejs.org/en/docs/guides/blocking-vs-non-blocking [Accessed: 06-
May- 2018].

[3] Stack Overflow, Stack Overflow Developer Survey 2018, 2018. [Online]. Available:
https://insights.stackoverflow.com/survey/2018 [Accessed: 08- May- 2018].

[4] Modulecounts, 2018. [Online]. Available: http://www.modulecounts.com [Accessed:
02- May- 2018].

[5] M. Carbou, Reverse Ajax, Part 1: Introduction to Comet. IBM, 2011. [Online].
Available:
https://www.ibm.com/developerworks/library/wa-reverseajax1/wa-reverseajax1-pdf.pdf
[Accessed: 02- May- 2018]. pp. 3-7.

[6] J. Hanson, What is HTTP Long Polling?, PubNub, 2018. [Online]. Available:
https://www.pubnub.com/blog/2014-12-01-http-long-polling [Accessed: 08- May- 2018].

[7] A. T. Holdener, Ajax, the definitive guide: Interactive Applications for the Web.
Beijing: O’Reilly, 2008. pp. 325-329.

[8] A. Bhatt, A Comparison of Push vs Pull Ajax, InfoQ, 2007. [Online]. Available:
https://www.infoq.com/news/2007/07/pushvspull [Accessed: 01-May-2018].

[9] L. Golab and M. Özsu, Issues in data stream management, ACM SIGMOD Record,
vol. 32, no. 2, pp. 5-14, 2003.

[10] Frequently asked questions. RethinkDB, [Online]. Available:
https://www.rethinkdb.com/faq/ [Accessed: 06-May-2018].

87

http://www.netimperative.com/2016/12/15m-brits-old-mobile-phone-gathering-dust-drawers-home/
http://www.netimperative.com/2016/12/15m-brits-old-mobile-phone-gathering-dust-drawers-home/
https://nodejs.org/en/docs/guides/blocking-vs-non-blocking/
https://insights.stackoverflow.com/survey/2018
http://www.modulecounts.com/
https://www.ibm.com/developerworks/library/wa-reverseajax1/wa-reverseajax1-pdf.pdf
https://www.pubnub.com/blog/2014-12-01-http-long-polling
https://www.infoq.com/news/2007/07/pushvspull
https://www.rethinkdb.com/faq/

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

[11] Slava Akhmechet. RethinkDB is shutting down. RethinkDB Blog, 2016. [Online].
Available: https://rethinkdb.com/blog/rethinkdb-shutdown/ [Accessed: 01-May-2018].

[12] PubNub Publish/Subscribe Tutorial, PubNub, 2018. [Online]. Available:
https://www.pubnub.com/docs/tutorials/pubnub-publish-subscribe [Accessed: 11- May-
2018].

[13] A. Mardan, Practical Node.js, Chapter 7: Boosting Your Node.js Data with the
Mongoose ORM Library, APRESS, 2014, pp. 149-172.

[14] Pavlou, Liang and Xue, Understanding and Mitigating Uncertainty in Online
Exchange Relationships: A Principal-Agent Perspective, MIS Quarterly, vol. 31, no. 1,
2007.

[15] Market share for mobile, browsers, operating systems and search engines,
Netmarketshare.com, 2018. [Online]. Available: https://netmarketshare.com [Accessed:
11- May- 2018].

[16] B. Shneiderman, Designing the user interface: strategies for effective
human-computer interaction. Boston: Pearson, 2017. ISBN: 9780134380384

[17] Mozilla Contributors, Modern web app architecture: MVC Architecture, Mozilla
Developer Network Web Docs [Online]. Available:
https://developer.mozilla.org/en-US/Apps/Fundamentals/Modern_web_app_architecture
/MVC_architecture [Accessed: 07-May-2018].

[18] Mongo Express Angular Node. [Online]. Available: http://mean.io/ [Accessed:
11-May-2018].

[19] Data Model Design, MongoDB Documentation. [Online]. Available:
https://docs.mongodb.com/manual/core/data-model-design/ [Accessed: 01-May-2018].

[20] MongoDB, Inc. Performance Best Practices for MongoDB, MongoDB, 2017
[Online]. Available:
https://webassets.mongodb.com/_com_assets/collateral/MongoDB-Performance-Best-P
ractices.pdf [Accessed: 02- May- 2018]. pp. 3-7.

[21] Passport, [Online]. Available http://www.passportjs.org/ [Accessed: 02-May-2018].

88

https://rethinkdb.com/blog/rethinkdb-shutdown/
https://www.pubnub.com/docs/tutorials/pubnub-publish-subscribe
https://netmarketshare.com/
https://developer.mozilla.org/en-US/Apps/Fundamentals/Modern_web_app_architecture/MVC_architecture
https://developer.mozilla.org/en-US/Apps/Fundamentals/Modern_web_app_architecture/MVC_architecture
http://mean.io/
https://docs.mongodb.com/manual/core/data-model-design/
https://webassets.mongodb.com/_com_assets/collateral/MongoDB-Performance-Best-Practices.pdf
https://webassets.mongodb.com/_com_assets/collateral/MongoDB-Performance-Best-Practices.pdf
http://www.passportjs.org/

Content Management System for a Real-Time e-Commerce Marketplace Tom Wynne-Owen

[22] Node.js Foundation, The Node.js Event Loop, Timers, and process.nextTick().
[Online]. Available: https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
[Accessed: 06- May- 2018].

[23] OOdesign.com , Design Principles. [Online]. Available:
https://www.oodesign.com/design-principles.html [Accessed: 06-May-2018].

[24] J. Martin, Principles of Object-Oriented Analysis and Design. Englewood Cliffs, NJ:
Prentice-Hall, 1993. ISBN: 978-0137208715

[25] AppTelemetry Page Speed Monitor, FabaSoft. [Online] Availabe:
https://www.fabasoft.com/en/products/fabasoft-apptelemetry [Accessed: 10-May-2018].

[26] P. Krill, Socket.IO JavaScript framework ready for real-time apps, InfoWorld
[Online] Available:
https://www.infoworld.com/article/2607757/javascript/socket-io-javascript-framework-rea
dy-for-real-time-apps.html [Accessed: 10-May-2018].

The following references are not directly cited in the text, however they did provide
valuable guidance throughout the project:

[27] P. Mulder & K. Breseman, Node.js for Embedded Systems: Using Web
Technologies to Build Connected Devices. Beijing : O'Reilly, 2017. ISBN:
9781491928998

[28] K. Chodorow, MongoDB: the Definitive Guide, Beijing : O'Reilly, 2013. ISBN:
9781449344689

[29] J. Purushothaman, RESTful Java web services - Second Edition. Birmingham :
Packt Publishing, 2015. ISBN: 9781784399092

[30] L. Richardson & S. Ruby, RESTful web services. Beijing : O'Reilly, 2008. ISBN:
9780596529260

89

https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/
https://www.oodesign.com/design-principles.html
https://www.fabasoft.com/en/products/fabasoft-apptelemetry
https://www.infoworld.com/article/2607757/javascript/socket-io-javascript-framework-ready-for-real-time-apps.html
https://www.infoworld.com/article/2607757/javascript/socket-io-javascript-framework-ready-for-real-time-apps.html

