

SMART CONTRACTS

WITH BLOCKCHAIN

ABSTRACT
Blockchain is the technology that underpins

Bitcoin, but there are many more applications for

Blockchain, with potentially large business and

societal impact. One of the recently proposed

applications is smart contracts

Name: Vidhi Patel
Supervisor: George Theodorakopoulos
Moderator: Philipp Reinecke
CM3203 – One Semester Project (40
Credits)

1 | P a g e

Acknowledgements
I am very thankful for all the support I have received from the University members and the

Equiniti. I am very thankful for their support and helpful guidance.

Firstly, I would like to thank my Supervisor Professor George Theodorakopoulos for giving
me guidance and advice throughout this project.

Furthermore, I would like to extend my gratitude to Equinity, especially the blockchain
developer for providing me with support and guidance and all the necessary information to
finish the project.

Lastly, I would like to thank my Mother and family who have encouraged to purse this
project and supported me to achieve my goal.

2 | P a g e

Abstract
Since Blockchain technology has been introduced as the technology sustaining

Cryptocurrencies, new applications of the Blockchain technology have emerged into the

market so much so that the vast majority of organisations are analysing diverse ways in

which they can implement it. Companies are interested in its capabilities especially how it

can be developed to improve their current systems by removing the need of any

intermediary entity.

The dissertation is based on Blockchain. The objective of my research was to analyse the

feasibility of Blockchain as an e-voting system. In particular, to produce a system that offers

the user a proof of vote, as well as prevents fraudulent activities that have occurred in the

current e-voting systems. The use case was provided by Equiniti.

Smart Contracts exploit the Blockchain Platform, conducting automated payments or

transfer of assets when the contractual conditions are met in the contract. They are used to

automatically enforce certain conditions in the transaction without the need for a third-

party involvement. The implementation of the Blockchain I have used to develop the proof

of concept system e-voting system is Hyperledger, which is an open source private

blockchain provided by IBM.

The prototype I have developed will determine whether blockchain can be used to develop

an online voting platform to address the issues in the current e-voting systems. The e-voting

systems will give people traceability of vote because it is an immutable ledger which

restricts data modification. Furthermore, this research studies the use of Blockchain of

technology and its implementation in government voting systems.

The conclusion demonstrated that Blockchain has potential to be a credible voting system

however there are some limitations that are yet of concerns and requires attention.

3 | P a g e

Contents
Acknowledgements ... 1

Abstract ... 2

Table of Figures ... 5

Introduction .. 6

Aims and Goals .. 6

Project importance ... 8

Audience and Potential Users ... 8

Background ... 9

Issues with the Current E-voting and I-voting systems. .. 9

Blockchain voting systems .. 10

Requirements .. 12

Aim .. 12

Justification for the Essential requirements ... 12

Assumptions .. 14

Methods & Tools for Solution ... 15

Choosing the Blockchain. .. 15

Language choice for Chaincode. ... 15

Data storage. ... 16

Frameworks & JavaScript Client Network development .. 16

API development. .. 17

Web Interface ... 17

Approach ... 18

System Design & Architecture Overview .. 20

E-voting system ... 22

Design .. 23

Web Interface ... 23

Admin Interface .. 23

Implementation .. 28

Network Development .. 28

Implementation of the chaincode .. 29

Dependencies for the chaincode .. 29

Chaincode Interface .. 29

Node SDK .. 30

Express.js (NodeJS web application) ... 32

GUI Implementation ... 33

4 | P a g e

Testing ... 35

My approach to Testing .. 35

Fabric Network Usability testing ... 35

Smart Contract Testing ... 36

NodeJS Application Functionality Testing ... 36

REST API Testing .. 38

Interface Testing ... 38

Evaluation ... 40

Functionality Fulfilment .. 40

Project Management & Technique ... 41

Technology Used in Development .. 42

GUI .. 42

Chaincode ... 42

NodeJS SDK ... 44

API ... 44

Testing ... 44

Future Work .. 45

Conclusion ... 47

Reflection on learning ... 48

Bibliography .. 50

Appendix ... 52

5 | P a g e

Table of Figures

Figure 1 Blockchain. A linked list with hash pointers. ... 6

Figure 2 Tamper Evident log Result of trying to alter the data .. 6

Figure 3 Feature driven development practise (W.Ambler, 2018) ... 18

Figure 4 Hyperledger Fabric Infrastructure (Strukhoff, 2016) .. 20

Figure 5 My System Architecture for Blockchain development. .. 21

Figure 6 Admin Index page - design of the index page ... 23

Figure 7 Design of the candidate registration page .. 24

Figure 8 Mock-up of the viewing all the candidate’s information. ... 25

Figure 9 Design of user voting page to submit their votes. .. 26

Figure 10 Slide out panel for the user page to check their voting history. ... 27

Figure 11 Slide out panel allowing the user to check their latest voting submission. 27

Figure 12 Error to demonstrated that invalid function was invoked. .. 30

Figure 13 Commands to deploy the network using Couch DB and CA. .. 30

Figure 14 Import form the Node modules to use the Hyperledger Fabric Client. 31

Figure 15 gRCP to add the peer and order to the network to initialise the channel. 31

Figure 16 Resolving the promises to ensure this data is returned ... 31

Figure 17 Implementation of the Request object to invoke and query the ledger. 32

Figure 18 Generation of the transaction ID used for invoke. ... 32

Figure 19 This checks the proposal transaction to make sure it is valid. .. 32

Figure 20 Example GET request in the REST API. .. 33

Figure 211 Example POST request in the REST API. .. 33

Figure 22 Query in the node SDK which will query the ledger. .. 33

Figure 23 Example AJAX Call to establish a connection between the application and the REST API. .. 34

Figure 24 Generates the certificates and genesis block for the blockchain using the cryptogen. 35

Figure 25 Docker command used to access a chaincode container. .. 36

Figure 26 Displaying the submission of valid transaction. .. 37

Figure 27 Example error generated for adding duplicate data. ... 37

Figure 28 Viewing the information recorded in the ledger. ... 37

Figure 29 Postman Testing screen of a GET request which generates has no results.......................... 38

Figure 30 Testing of the web application on the localhost:3000 ... 39

Figure 31 Images needed by docker to generate the Fabric network. ... 41

https://d.docs.live.net/3b133c244721abc4/Documents/Year%203/Final-Year%20Project/Final_Report%5bC1524859%5d.docx#_Toc513755892

6 | P a g e

Introduction

Aims and Goals

Figure 1 Blockchain. A linked list with hash pointers.

A Blockchain is a linked list which utilises hash pointers as shown in Figure 1 which will give

the users and the government a platform where tampering of evidence is not possible as

demonstrated. A hash pointer is a pointer to where some data is stored in memory with a

cryptographic hash of the value (Walker, 2017-2018). Blockchain is a peer-to peer system

where the transactions are transparent to each individual involved in the network.

Transactions written on the ledger are both traceable and anonymous. This happens

because identities are not required to operate a system or execute the transaction.

This gives the users and the government traceability of transactions to ensure a secure

system. This transaction will be recorded on the ledger therefore the peers in the network

can all verify that the transactions are valid. The hash-pointer is developed to hold the

history of the earlier blocks. This design aspect is what makes the modification of data held

within the block challenging.

Figure 2 Tamper Evident log Result of trying to alter the data

Data

prev: H()

Data

prev: H()

Data

prev: H()

 H()

Data

prev: H()

Data

prev: H()

Data

prev: H() X

X

X

H()
)

7 | P a g e

Figure 2 shows a comparison of hash-pointers of the blocks can help to determine if any

modifications have taken place. If data has been modified the hash-pointer value of the

block containing the set of transactions will be incorrect, it would be necessary to modify all

of subsequent blocks hashes to cover up the manipulation of a transaction. However, as

long as the genesis block (first block) of the blockchain has not been manipulated the rest of

the blockchain should remain secure (Walker, 2017-2018).

The most important implementation of Blockchain is smart contract. Smart contract is the

business logic which decides how blockchain functions, it is automatically executed by the

consensus protocol. Transactions are sent to all of the peers, where they are collected into a

block. Randomly, a peer will be able to broadcast a block for inclusion in the block chain.

The other peers will only accept the block if all the transactions recorded inside are valid

(Walker, 2017-2018). This is the technology where conditions of how the e-voting

application operates will be defined to ensure security and functionality of the system. Then

based on the conditions and how they are fulfilled it will execute the payment, in this case

allowing a user to cast a vote.

There are only a few e-voting platforms that have been developed or being used in the

world. A country that has achieved this is Estonia. As blockchain is an emerging technology

there is a possibility for the government to research and implement an e-voting system.

The purpose of this project was to discover the feasibility of Blockchain Technology, to

provide a meaningful and convenient way for individuals to vote that provides the user with

a proof of vote. This can be advantageous for the government as they are not involved in

the intermediary entities by having them calibrating the e-voting systems.

To accomplish the task for this project, I will be developing a Blockchain application that can

be used by individuals to vote for a candidate of their choice. This information will be

recorded by a database which will behave as a state database. The Ledger will be the

underlying platform for the software, alongside that I will create a network endpoint which

will allow me to execute transactions. To provide the users with all of the necessary logic I

will have REST API so that the underlying infrastructure can be used in an application.

Moreover, with the prototype, my goal is to implement all the necessary functionalities that

allows the user to cast their vote and their votes to be correctly counted. This can enable

the government to have an immutable record of the votes with a smart contract which

allows for a decentralised voting system.

8 | P a g e

Project importance
Several papers and articles have been written on the concept of E-voting and with one

country making the concept of E-voting possible. Many countries are looking and

researching into making an E-voting system which has all of functional requirements that

have been fulfilled by the current ballot voting.

The crucial point in the project is to provide a proof of concept for a system which is fraud-

proof by keeping the identity of the individuals anonymous but still allowing the user to

obtain proof of their vote. This will ensure that the fully transparent system can hold

sensitive data and can be protected from malicious intent but giving the users the flexibility

of using a safe secure platform.

My research has suggested that Blockchain could be an ideal implementation for the E-

voting system however there is no proof of concept that it will work to meet all the

requirements from the ballot voting systems or even the e-voting system implemented in

Estonia. I aim to give a proof of concept of the blockchain e-voting application which can be

fraud-proof.

Audience and Potential Users
Audience for my project I have assumed are the voters, the prospective is to allow and

encourage younger generations to be able to vote form their homes. This is to primarily

increase the number of people currently voting by giving them a convenient way of voting.

An assumption is made that users do not need to have any technical abilities and has not

already used and online voting platform prior to this.

I will also be offering a web interface which users can use to cast a vote. The government is

to register the candidates. If the smart contract (ChainCode) is setup correctly so that it

carries out real time verification by the nodes, where all the users can see the main

functionality. To understand what Equinity wanted me to achieve I constantly kept in touch

with the Equinity blockchain developer to see what sort of functionality he wanted to see in

the application and I sent the definitive version of the ChainCode I had to be validated by

them. To run the application, you will need a to have the blockchain network deployed and

the REST API running to facilitate the transfer of data to and from the blockchain network.

There is no target age for this application. I think it will be a useful system if they are of age

when they are eligible to vote they can interact with the application. The application can be

beneficial to both the government as it becomes easier to deploy and setup then the

current e-voting systems in places and for users it just offers a more convenient way to

Vote.

9 | P a g e

Background
Before I even began to consider the risks that the E-voting presents I wanted to discuss the

two distinct types of blockchains available. Bitcoin which underpins this technology is a

public blockchain allowing anyone to access the distributed ledger to read and write

transactions. Any node in the network will have the opportunity to publish the transactions

as long as the node has the ability to solve cryptographic puzzles. Consensus is a critical part

of the blockchain which is carried out by the peers in the network. The peers in the network

need to confirm the transactions carried by the users to ensure that they are valid before

allowing the users to commit them. The transactions are not verified by the peers but are

verified through an algorithm (Berke, 2017).

In comparison to public blockchain, in private blockchain the admin has control over who

reads the ledger and who writes to the ledger and who can be trusted to verify the

transaction. A consensus in these types can be accomplished by the peers communicating

with each other, in this case each node can have a copy for the blockchain which then

updates the other peers of the addition of new transactions. (Berke, 2017)

Issues with the Current E-voting and I-voting systems.
Over the years there have been many attempts at digitising the Voting system but none of

the system implemented so far have been secure enough for when it comes to hosting or

facilitating the elections. By researching online, I have come to find that the current

electronic voting systems are failing at three requirements which is compromising the

security of their systems.

To ensure that the online system is secure they have to focus on these aspects which is to

ensure that the voter can only ever cast a maximum of one vote at any one time, as well as

that when it comes to counting the votes the system needs to ensure that the correct votes

are counted, and all the votes are counted. Finally, when a user casts a vote a third party

should never be able to identify who the user has voted for (Lambert, 2017).

The difficulties when it comes to onsite voting systems is that there is nothing to ensure that

the electronic voting machine does not have malware embedded in it which when the user

casts a vote it will take the vote and changes the candidate choice for that vote to a

different candidate. Furthermore, this can also be achieved through virus and trojan horses

which cause interference for the users when the user is trying to vote (Lambert, 2017).

Even if that is not the case and the votes are cast correctly they will be recorded into a

centralised repository such as a server which will store all the votes. This can easily become

the target of hackers to access the server which store the votes because it is a centralised

repository of votes this is a big vulnerability in any electronic voting systems (Lambert,

2017).

In the past US presidential election, The White House released evidence about Russia’s

hacking into their electoral systems. One of the targeted states was Illinois, where sensitive

information about the users was compromised. This included 15 million social security

numbers of which 90000 were active voters. However, this did not affect the election they

10 | P a g e

were able to obtain access to the information about voter registration in the electoral

system. This allows the hackers an opportunity to access the data they require to

manipulate voting records (Robertson, 2017).

Online voting presents a different set of risk to onsite voting system where it becomes very

difficult to authenticate the user as the they user would have be authenticated through the

use of a server to ensure that they are real this is an issue because of public Wi-Fi and there

is no way to make sure that the users device is not comprised of key loggers where the

user’s credentials could be recorded to gain access to the system. If this were to occur, it

would instantly compromise the user’s identity, so someone can remotely identify who

casted the vote or where the vote was casted form (Lambert, 2017).

As of the Swiss e-voting trials systems it was concluded that the security of the systems

need to focus on preventing vote manipulation. They concluded this because there was no

use of a digital signature which would ensure the users authenticity, non-repudiation, and

data integrity for when the votes are being casted to regard the possibility that the user is

not whom they claimed to be (Kobie, 2015).

These are just some of the issues highlighted by the current implementation of the

electronic voting system. Now I will be looking at the how and if the issues address here can

be solved by blockchain.

Blockchain voting systems
A Blockchain could offer a potential solution where the users would be able to cast their

votes. In a real world if a general election is announced the users would have to register to

cast their votes online. This will be just like the existing process for the existing general

election process.

To address the issues about user anonymity the blockchain could be used in a way that once

the application network is deployed and the user will be able to authenticate themselves

and use the application, they will then have to enter their authentication details alongside

their candidate of choice and then the vote will be then submitted. The improvement for

this system will be that the users will be able cast their vote multiple times and but only

their final vote will ever be counted.

Since the user information never stored on the system there will be no way to determine

the user’s identity thus making it very difficult to identify who they have voted for. This will

effectively reduce the chances of vote manipulations. Each time the user re-casts a vote

they will be extended the ability to check their vote as well see their voting history to make

sure that the votes they have casted are their own choices.

To address the issues about vote manipulation and fraud. Even what the admin has access

to see and modify can be restricted. On the governments side, they have to setup the

candidates by entering these details such as the First-name, Surname, and details of which

constituency they are entering on behalf of. One of those details, candidates are setup on

the blockchain and the application can be then deployed so that the other users will be able

to access the application. The improvement is that is that the data is public and once the

11 | P a g e

candidates are written on the blockchain the tally of votes cannot be manipulated without it

being recorded on to the blockchain and this is traceable. One the election is closed the

tallying of the votes can began, to reduce vote tampering government officials have no

access to change the vote variable which will reduce the risk of vote manipulation.

12 | P a g e

Requirements

Aim
The aim of my project is to develop a proof of concept by using the blockchain technology

and smart contract logic to develop a secure voting system yet making the platform modular

and extensible.

I aim to use blockchain and smart contracts to improve the current electronic systems in

place to reduce election fraud. The main functionalities I want to focus on is to make sure

on developing a secure system which is why I have written these as the essential

requirements.

Here I aim to list out few of the essential requirements and desirable features I want to

implement in the system.

Essential Requirements

• The individual should only be able to vote for a single entity.

• The potential for the individual to change their vote and confirm the change of vote.

- This also requires the user to be authenticated and already logged on to the

system where they should be able to vote.

- The user should also need to remember their username and password because

this will be a security measure to vote.

• The person who participates in e-voting needs to be able to make sure that their

vote is correctly accounted for.

- This works under the assumptions that the user has already registered to vote

and has access to the network.

- This mean that the user has already voted and once the Election day has ended,

and when the vote is being counted a user should be able to log back into the

system to see their vote has been counted.

- This also means that If the user has voted more than once their most recent vote

that they have casted will be taken as the final choice and the system will

allocate votes according to candidates accordingly.

• No-one but the individual should be able to identify themselves and see who they

have voted for.

- This is based on the assumption that user remain anonyms, so that no data of

their should be accessible or read by any other individual beside themselves.

• The application should be as modular as possible so that it can easily be extended at

any point.

Justification for the Essential requirements
Requirement 1: This is a vital requirement as it in any normal election a voter is only allowed

to vote for any one candidate. I have implemented this as this is how the elections work.

Requirement 2: This was an important requirement which was suggested by Equinity, I

wanted to implement it to see if the user could vote multiple times and their most recent

vote would be counted, this would be important to prevent and stop users from casting fake

13 | P a g e

votes and giving the users flexibility to change their minds. Not only this but by supporting

this you can quickly find vote manipulation as the history of document will change and the

users can be aware of the issue.

Requirement 3 - With this the user can check that their vote is counted, and they can

confirm that it is counted correctly so they can be sure to see that the results of this election

is reliable and accurate.

Requirement 4 - As blockchain records information on blocks which will be visible to each

individual on the network especially the government officials who are deploying the

blockchain network will have access to sensitive information which is why I have designed

the application in a manor where no individual can identify and access the other individual’s

information and breach the anonymity of the user.

Requirement 5 – This would make the project more robust as you are able to quickly

address the errors and address it for the system to become more fault tolerant and this

would also help the extensibility of the system to that more functionality could be easier

added and debugging becomes an easier process

Additional Functionality

• To encrypt all the data on the Blockchain

• To create a Rest API as intermediary service between the interface and the

Blockchain

• To create a Website which will be the interface for the Blockchain for demonstration

purposes.

Justification for Additional Functionality

Requirement 1, I have decided to not implement this functionality as I started to develop

the project I decided it would be better to avoid storing sensitive user’s information on the

blockchain to preserve the user’s identity and prevent voting fraud. I did this because if the

users information was being stored in the blockchain it would be easier for the people

contributing to the network to identify the blockchain containing the voter’s information. By

doing this I can ensure that the system is secure, and that election fraud cannot easily

happen while keeping the transparency in the ledger.

Requirement 2 This requirement I wanted to implement as It would ensure that the

application is returning the correct information from the ledger and the correct logic is

being used to execute a transaction. It seals the applications off so that only the data is

needed for a particular function is used and other irrelevant information is ignored.

Requirement 3 This was a vital requirement which I wanted to implement as it would make

the user only have access to the functionality that they need to have access to sealing the

rest of the system from interference so that the logic cannot be changed. So, there will only

be one access point for the application.

14 | P a g e

Assumptions
While developing this project I made few assumptions which are:

As previously mentioned the end-product will be a fully functional prototype, but it will be

more focused on meeting the functional requirements, not on having the most appealing

application.

You have to ensure the network is online before bringing up the application server which

will launch the web interface for this application.

To make sure the system remains secure and preserve the user’s identity I will assume that

users have already registered and have access to this system which will extend them with

the functionality to cast their votes. This would ensure that even the admin will not have

access to the most sensitive information about an individual.

Once the network is deployed, the admin has to ensure that voting has been open so that

the other users will have access to correct functionality.

The duration of the election will be controlled by the admin and they will decide when the

election will start and end.

15 | P a g e

Methods & Tools for Solution
To develop an online e-voting system I will be using various languages and frameworks, to

design and build the system. The justification of why I have used the languages and the

frameworks to develop the project as follows.

Choosing the Blockchain.
Hyperledger is an opensource project supporting different blockchains for development,

and there are few named websites which can be found in the documentation to interact by

asking question in the Hyperledger community. When it came down to choosing two

blockchains in Hyperledger I was indecisive between Hyperledger Fabric and Burrow.

Fabric ChainCode is the equivalent of a smart contract and is executed in a secured docker

container which is separated from the endorsing peers and the ChainCode initialises itself

and keeps up the ledger states using the transactions that you submit through the

application giving you a bit more control. On the other hand, Burrow executes a smart

contract in an Ethereum Virtual Machine (EVM). Consensus is always agreed on which code

is to be executed and all the peers agree of their behaviour and they have access to the

same data that is available on the blockchain allowing all the peers to conduct the same

calculations. (Softjourn, 2018)

One of the reasons I chose Fabric over Burrow was because once the chaincode is installed

and instantiated I was able to change and upgrade the smart contract any time afterwards.

Meanwhile in Burrow contract the contract could never initiate a transaction because they

are reactive, and a new contract would have to be created by other users using the

bytecode operation. To have control of what was being logged when the function has

started running and when it has finished executing this functionality was offered by fabric

whereas with Burrow I could not do that, those receipts returned by the transactions are

not stored by the blockchain. (Softjourn, 2018)

Since e-voting systems are required to be highly secure because of their nature. I decided it

would be better for me to pick Fabric over Burrow because it gives me as a programmer

much more control over Hyperledger Fabric and control over its execution and how It

behaves with the logic.

Language choice for Chaincode.
After choosing the Hyperledger fabric, I decided I would choose the Go programming

language to program my ChainCode in rather than java. This was because Go made it easier

for me to parse the data into JSON so that it could easily be added in to the database and

retrieved from the ledger.

In addition to that the support for Java was still being built and more functionality and

resources were needed by java which are still incomplete. Meanwhile, for Go the resources

were already defined and completed. (Raja, 2017)

The Shim interface would allow me to read and write data into and out of ledger where I

can get it to interact with the network by using the functionality available in the Shim

interface. Another thing which convinced me to use Go was that Hyperledger Fabric was

16 | P a g e

written in it and it would be easier to ensure that smart contract is in the same language, so

I can easily understand and depict any errors that’s arise. (Hyperledger, 2018)

Data storage.
Data Storage for the Blockchain, I primarily had two options of either using Level DB or

Couch DB. I chose Couch DB over Level DB because it gave me more features and a way to

debug the system. Using Couch DB, I can always check that the correct data is recorded and

written in the right format using the fauxton API meanwhile Level DB did not offer any

functionality like this.

While keeping in mind the functionality of the application and the complex data model I

wanted to implement, as well the speed and type of storage structure I wanted to have I

decided that it would be best to use CouchDB. I chose CouchDB over Level DB because I

wanted to model the data using JSON and use CouchDB syntax to perform some complex

queries which were not supported Level DB. Nonetheless one of the other feature to note

was that the speeds using CouchDB was very quick to read data out of and into the database

(Snellinckx, 2017).

Furthermore, as I was using the Node SDK and JavaScript to interact with the smart contract

which would read data out of the ledger CouchDB which very easy to work with, so that I

could easily combine and use the framework that were already supported.

Frameworks & JavaScript Client Network development
NodeJS is an open-source platform which provides runtime environment for building

applications. It is written in JavaScript so there are very minor if any changes between

languages for defining functions. This will enable to learn and rapidly develop my

application. Ideally NodeJS consists of a package manager which allows you access to

diverse range of packages for development (sigoa, 2018).

This was vital as one of the packages it has is for building blockchain application. It allows

me the access to Hyperledger Fabric Client framework which I utilised to get access to the

tools and modules offered by the framework which allows API to interact with the

Hyperledger Fabric Blockchain network (Node Js, 2018).

I used this module as it gave me a Fabric Client module which I could easily implement into

my application to use it. What this module essential does is that it allows you to create a

client object and the chain in the Blockchain, it goes to add all the clients through using port

number of peer’s orders and the CA.

The CA is otherwise known as the certificate authority, is another module in the framework.

which is used to implement and use membership management. The CA use the http

protocol. This is primarily used to ensure that when a user is enrolled into the system they

are given certificate providing their existence and as a way to identify the user their role in

the blockchain (Hyperledger, 2018).

This framework was vital to for me to be able to build the application which can invoke and

query the ledger using the smart Contract I had implement.

17 | P a g e

API development.

When I started to search for popular technologies that were compatible with node.js and a

NoSQL database. Express.js was the most popular choice, with so much support and

resources available it was highly promising that I could implement functionality that I

needed to facilitate the transactions from the web interface to the blockchain network

(sigoa, 2018).

I have chosen Express.js, this framework is developed in JavaScript and it has NodeJS as

runtime. It is one of the most popular web frameworks. It allows me to create a compatible

application which will work with any underlying platform. Most importantly it provides with

HTTP methods used in browser to send POST and retrieve data GET. To further justify I will

also have the ability to route the application to a particular function using URL.

Web Interface

One of the other benefits offered by the Express.js is that it will work well with any

templating engine supported by NodeJS. Aside from the REST API the router can also be

used to dynamically render pages for the web application.

A templating engine enables you to have static file, that when they are running the

templating engine it will use the template to generate the actual HTML file. This enables

rapid prototyping for the GUI because tags don’t have to be repeated. Most popular and

compatible with Express.js is Pug (Express.js , 2018). It can be downloaded with ease into

the existing node modules ready to use with Express.js as long the path for the folder

containing the pages is defined in the Express.js application file.

JavaScript and AJAX (Asynchronous JavaScript And XML) will be used to establish a

connection with the Express.js Sever file so that data can be exchanged in the background

between the AJAX request and the API (w3schools.com, 2018). This will allow me to show

the results without having to load the page making it efficient.

I will be using JavaScript to ensure that the data can be displayed correctly as well as AJAX to

ensure that all of the latest query results are shown on the page. This will be helpful due to

the fact that you don’t have to keeping loading the pages to see the latest results AJAX deals

with this automatically. This will ensure that the GUI can be implemented with ease and

that the functionality can be displayed correctly and accurately.

18 | P a g e

Approach
My approach to this project has been based on a Feature-driven development. This an

iterative Agile method which works well with my project as I have predefined what I want to

achieve.

This is seen as one of best practises in the industry and more importantly for my project it

allows me to develop by focusing my time on one stage at a time. As I work through all the

stages it will enable me to develop features that are of excellent quality, effective and

accurate. Due to its iterative nature I can easily make modifications with the designs and be

aware of those changes.

Feature -driven development has 5 explicit stages which are as follows: Develop an overall

model, build feature list, plan by feature, design by features and build by features.

Figure 3 Feature driven development practise (W.Ambler, 2018)

The way I used feature driven development was to break the Hyperledger Fabric into a

series of stages, and at each stage of the application development I used feature driven

development. This was done to make sure that the system was effective, and it was working

and functioning properly to create a fully working application. This was ideal as each stage

of the applications needed a distinct set of features to be implemented for it to work in

conjunction with the Hyperledger fabric network.

I wanted to ensure that the platform I developed will be extensible and modular. By

choosing this practise of development it enabled me to continuously modify and iterate

over the design to achieve modularity and extensibility of the platform. I wanted to focus on

this as it ensures the quality of code and while ensuring clarity on how the code functions

making it easy to identify the issues in the application.

19 | P a g e

I however did not follow all of the practises of this process because I did not have a clear

idea of how I should implement the functionalities thus I did not design an overall model of

what I want to achieve I based the overall model on the functional requirements to develop

the system. I chose the best practises to focus on and to not focus on in feature driven

development. While starting this project I had very vague ideas of the development of the

project by speaking to Equinity and researching as I began to implement the functionalities,

ideas became clearer about what the results of the application should be and how to

achieve them.

The requirements were what I used to define the functions in chaincode and this was the

logic that would be implemented in the application to ensure a secure functional system.

Meanwhile, some requirements were derived from speaking to Equinity blockchain

developer the others I have implemented were obtained because of research. These are the

requirements I used to develop a feature list.

When implementation began it was clear that this project should be developed in a

hierarchical way to ensure that all the functionality is effective. While keeping this in mind

with the complexity of setting up Hyperledger fabric. I applied this to develop an overall

general time plan for my project. I started to implement the features that were necessary

and were essential within the system. I did this this way because without the logic of the

system (chaincode) there was no point in me building a NodeJS application which would

interact with the blockchain network. This enable me to ensure that each stage of the

application has the correct set of features allowing me to link the application together with

ease.

Overall because this project was constantly evolving, I reviewed this later stage when I was

further ahead in my project and I realised that some of my requirements have changed and

some are just obsolete then I had to decide to pick the features that complemented the

project and focused on making them better. The features I have decided were necessary to

implement, I assessed the complexity of the features in addition to how they could be

incorporated within the system. The next aspect I analysed was the timeline of how long it

would take to implement the feature to ensure that the feature will be fully functional

within the given timeframe.

By doing it this way and testing the implemented functions against the network to ensure its

outcome. This complemented the feature driven method perfectly as some features may

need to be modified to work accurately and effectively. The most important and challenging

was the implementation of the smart contract which was the feature that needed to be

developed so by distributing enough time for the development of the smart contract it was

fully operational and working. This enabled me to create the timelines where I could

schedule the supervisor meeting for a review and to track how much of my project I have

completed and to constantly keep my supervisor informed about the milestones in my

project and to make sure that the ideas are worth implementing and to ask for advice about

when I have been stuck. For every feature I did develop I made sure to check that they

coincide with the initial requirements I wanted to implement.

20 | P a g e

System Design & Architecture Overview
Blockchain, is a distributed ledger which has peers who communication with each other.

Each of those peers have a copy of the smart contract, these peers are often related to their

domains which they trust and entities that will control them. So, all the peer run as if they

are part of the same physical server.

Figure 4 Hyperledger Fabric Infrastructure (Strukhoff, 2016)

I have been using the Stable version Alpha v1.0 which was released when I started with my

project in February 2018. In this system architecture we have the client which will run the

NodeJS web application which consists of and utilises Hyperledger Fabric Client SDK. The

web application that I have developed will use the Hyperledger Fabric Client. The Client will

be used to enrol and register the user by accessing the membership services. Membership

services provided by the client CA are critical as it assigns the user enrolment certificates

(ECerts) upon when they are registered, and it issues transaction certificates (TCerts) this is

what gives the admin both anonymity and non-repudiation when conducting transactions

on the blockchain. (Hyperledger, 2018) The registered individuals will be allowed to connect

to the Hyperledger network to invoke transactions on the peers.

Figure 5 will demonstrate how the client application will function. The client application will

consist of a website, REST API and the Node SDK. SDK for my application will connect to

three different entities one of them being the Orderer which is an addition to the version in

comparison to version 0.6. The Orderer from the ordering service provides the

communication channel which is shared between the client and the peers, so essentially the

client can access the channel to broadcast messages which are then sent to all of the peers,

so they can build the block for the blockchain.

21 | P a g e

Each peer node in this case will have an instantiated version of the ChainCode this happens

when the network is brought up by default the instantiated version is called ‘mycc’ which

stands for my chaincode. The incoming transactions from the client node will invoke the

functions defined in the smart contract. The instantiated copy of the smart contract will

allow all the peers to verify the transaction so, they can either include the transaction in the

block. If all of the transactions recorded by the peers are valid then the block gets added to

the blockchain (Hyperledger, 2018).

Any transaction sent from an application requires endorsement. The transaction proposal is

sent to peers for validation to an endorsement peer. This is often the peer that you will

connect to using node SDK Fabric client. The endorsing peer will endorse the transaction

before it is committed to the ledger following an endorsement policy to ensure that the

transaction that you trying to commit is valid, this is different for each chaincode thus the

endorsement policy for each chaincode is different. Once it has declared the transaction to

be valid it will execute against the ledger affecting the state of it (Bezgachev, 2017).

The Client node, which is our application for it to communicate with the network we

connect the client to the CA which is the Certificate Authority. The CA then issues the

registered user with the enrolment certificates upon bringing up the network application.

Client

Figure 5 My System Architecture for Blockchain development.

22 | P a g e

The CA is always contained inside the Organisation otherwise shown as Org1 when you are

deploying or looking at the Hyperledger application this is what creates and connecting the

web application to all the peer and the blockchain network via a channel which by default is

set to mychannel. The messages broadcasted are normally delivered to all the peers unless

there is an endorsing peer which is set in the Node SDK which in this case means that the

messages will be sent to Peers unless you have selected an endorsing peer. In this case it

will be sending the transactions through the channel to the Peer0.

E-voting system
The proof of concept system will be created using the NodeJS. The system will give access to

different user’s roles such as government official who should be responsible for deploying

the blockchain network and making sure the application is up on election day. Not all of the

functionality accessible to the admin will be available to the voter.

A government official should be able to register and enrol other candidates on to the

blockchain. To register candidates some details will be needed such as the constituency and

the candidate name. This should be done before the voting system is online where the users

are able to access the application to submit their vote. Once the network is deployed and

Blockchain voting is open only certain functionality will be available to ensure that the

system runs smoothly. These functionalities will include the user’s ability to cast their vote

and modify it. They will also have the ability to check their vote and to get their voting

history over the duration of the election period and even after it has ended so the user can

see that their vote has been accounted for.

The user population of the system who are eligible to participate in the election process can

enter the necessary details to be able to submit the vote. Modifications of votes can be

made on behalf of the users if the users provide the correct credentials. This reason this is

possible with the ledger is because the ledger can maintain a record of the users votes using

the credentials they have submitted by generating cryptographical puzzles.

The participants will have the ability to comprehend their voting activities, as it will be made

available to them. The submissions of their accountability of the votes will be represented

by two different status depending whether it has been accounted or not.

On the other hand, once the votes that have been accounted for, the user will be notified of

a change in their status. The reason that the votes are not being counted immediately

towards the final tally is because I plan to use a Boolean value to determine whether the

vote has been counted or not, this would allow me to make sure that only the latest vote

input is counted, and it is only counted once. The user has the option to keep modifying

their choice of participants until the election is finished. This will reduce voting fraud as

nobody has control over the process of how the votes have been counted.

Once the general election has concluded, the government official will be able to evaluate

the outcome of the election and declare a winner.

The full specification of the system agreed by Equinity, to make sure all the functionality

that they wanted to develop have been met will be in the next section.

23 | P a g e

Design

I have tried to create a proof of concept prototype of how the e-voting system should work.

As I have already mentioned I am more focused on creating an application that meets all of

the essential requirements and not developing an a visually appealing application.

I have still tried to implement and follow all of the Nielsen’s heuristic principles. To try and

develop to develop an efficient and effective application.

Web Interface
The web interface is separated into two sections one for the admin who should be a

government official assigned to deploy the blockchain application. The functionality given to

the admin will be different to the users who will be using the application to vote.

Admin Interface

First, they will be able to see the navigation bar which will show them all of their

functionality that is available to them. The admin should have these functionalities in the

menu, Register Candidate and View Candidates. Aside from this the index page will have

two buttons for opening and closing the voting system. As well as a search bar where they

will be able to search for things.

Figure 6 Admin Index page - design of the index page

Behaviour

- if the Open voting button is pressed the Voting for the users will be open.

- if the Closing voting button is pressed the voting for the users will be closed.

- If you use the search bar, then if the results exist then they will be displayed

underneath the search bar.

24 | P a g e

- -If the navigation bar is used then it will take you the Page you have selected to

view.

Register Candidates

Once you have navigated to ‘Register Candidate’ this page the functionality will allow you to

add Candidates who are participating in the Elections. This will then register the Candidate

on to the Blockchain.

Figure 7 Design of the candidate registration page

Behaviour

- To register the Candidates to the blockchain you will need the following details

their first name surname and the party they are running candidacy on behalf of.

- Then they should be able to submit the application. By pressing the Register

button.

- The candidates will only be registered on blockchain if the voting is closed for

the users because without any candidates they should not be able to register any

votes on the platform.

25 | P a g e

View Candidates

Once you have navigated to ‘View Candidates’ it will show you all the candidates that are

registered on the blockchain and all information associated to them.

Figure 8 Mock-up of the viewing all the candidate’s information.

Behaviour

- A table will be displayed to the users showing all the candidates on the ledger.

- At the bottom of the page a button will be displayed labelled ‘Count Votes’. Once

the election is closed only then the admin will have the ability to count the votes

and have the total votes displayed in the table.

- There will also be a search bar placed underneath the table displaying the record.

The search will take the name of the candidate party and show you all the votes

casted by the users for this particular candidate.

26 | P a g e

Users Interface

Once the users are logged in they will be directed to a Cast Vote page which will define all

the functionality that the user will have access to on the system. This is the functionality

where the user should be able to write data to blockchain.

Figure 9 Design of user voting page to submit their votes.

Behaviour

- Once the user is on this page the user should be able to see a form with a set of

fields that need to be filled before submitting the form.

- To fill out the form they will need to have their username and password and

then there will be a dropdown menu element which will allow the user to select

the candidate that they want to vote for.

- Once the user has filled out the form they can select to submit their votes. These

will then be written on the ledger.

27 | P a g e

Figure 10 Slide out panel for the user page to check their voting history.

- They can see their Voting history to see all of their submission of votes. All the

information related about their votes and modifications to their choices will be

retrieved and displayed. To use this functionality the user will need to have their

username and password.

Figure 11 Slide out panel allowing the user to check their latest voting submission.

Lastly the user will also be able to check their latest vote this will show them when their

vote has been counted. Keeping the user informed about the votes. To check their votes,

they would also need their username and password.

28 | P a g e

Implementation
Hyperledger Fabric is a network which has been developed and supported by the

Hyperledger community. Fabric is a GitHub repository which you download, which consist of

all the files that you would require to build your ChainCode and bring up and deploy it to the

network (Hyperledger, 2018).

Network Development
Setting up the Hyperledger network for smart contract development, this can easily be

achieved using Docker. Docker is a containerisation software. (Docker, 2018) This tool will

allow you to setup the network in your local machine by providing you with containers

where the code will be executed. These containers which are provided by docker use

libraries and settings to enable docker to work with the network. When your setting up the

network the Hyperledger community tells you about the images published by them which

are needed by docker for it to operate correctly with the blockchain network. Docker is not

the only option to setup the network there are multitude of option such as IBM Bluemix, but

it requires a subscription to access it, however, there is a trail phase for 30 days.

Moreover, reading the documentation is essential when you are trying to generate the

network to ensure that all the prerequisite tools for the project are installed correctly if this

has been achieved it becomes easier to generate the network. Docker needs to be running

while you are trying to bring up the network. What docker does in this scenario is that it

creates the containers in which the CA, Orderer, CouchDB and endorsing Peer which in our

case will be Peer0 will reside.

Due to the design of Hyperledger Fabric there are two diverse ways to interact with the

network either using the Node SDK or the CLI (command line Interface). By incorporating

the CA in my network, I had to move my CLI container from the docker-compose file. The

container had to be moved to the docker-compose-e2e.yaml and the template file where

the docker-compose-e2e.yaml file is generated from so the that the CA and CLI container

can both run at the same time. The CLI runs the script.sh file. The script.sh calls the orderer

which creates the channel, and this is the aspect that handles the consensus of the network,

thus this is where all the transactions are executed in the network. It sets up the orderer

and creates a channel called ‘mychannel’ and has Peer0 and org1 join the channel. The

scriph.sh also installs and instantiated the ChainCode so now all the peers will have access

to the newest version of ChainCode, so verification of transaction can be conducted. Once

this is done then the node Js application can be used to carry out Invoke and Query

transaction. (Hyperledger, 2018)

Issues with setting up the network were uncovered when I was testing the network for its

usability and its functionality, so I have addressed all the issues I experienced while setting

up the network there.

29 | P a g e

Implementation of the chaincode
Chaincode is the business logic otherwise known as the smart contract. This is where you

outline the instructions for the transactions. These rules that are outlined in the chaincode

will become the rules that are enforced by the contract before the data is recorded. The

transaction is sent in the form of transaction proposal to ensure its validity before the

transaction is executed against the states of the ledger, the results are stored in the ledger

as key-value pairs. Once this transaction is sent to the network it is sent to all the peers and

they all apply the same logic and verify the transactions.

I have written my chiancode in Golang to make sure it can be understood and executed by

Hyperledger fabric network. I have previously discussed the benefits of this in my methods

and tools for solution section.

Dependencies for the chaincode

I have implemented a few dependencies which were imported to make sure I had the

correct tools to make sure the application was done to high code quality.

• Fmt – used to log and print result returned by the network

• Errors – the error library is used to make sure that relevant, clear, and concise errors

shown to the user so that they can understand what the issue is in order to address

the issue.

• Shim interface – this is the interface that allows me to write the go code into

chaincode and this is important to interact with the ledger.

• Peers - this was part of the Shim, though it is to make sure that it interacts with the

peer so that the transactions can be verified by the peers.

• Sha512 – this dependency was used to develop a hash function which will generate

a hash based on parameters. This particular library was chosen because it has

become the industry practice.

Chaincode Interface

This interface offers three functions that can be implemented which are Init, Invoke and

Query. This is done through stub which allows the functions like these to read and write to

the ledger (Hyperledger, 2018).

To insert the values as a key value document into the ledger this is done through using

stub.PutState() before the document is inserted it needs to be marshalled into JSON. On the

other hand to retrieve values from the ledger you need to use stub.GetState() and when it is

read out it has to be unmarshalled before the value can be read.

Init is always the first function to be executed, when the chaincode is deployed to the

network Init functions instantiates the state of the ledger and set the initial Key-pair values

on to the ledger before any other function is executed.

In the system only, when the Init function in the chaincode is executed it will initialise the

current state of the vote system. The initial state of the voting system will be set to closed

hence only allowing the certain set of functionalities to be invoked. This will remain until the

30 | P a g e

state of the blockchain has changes for the system, it means that until the election is

opened to the voters.

Invoke is the function that is called when you want to read or write transaction to the

ledger. What I have done is defined all the method invocations inside an Invoke function so

that when a method is invoked the request and the data is grouped in to a transaction

which in turn is written on to the ledger. Invoke also confirms that the function is available

so that it can be executed otherwise returning an error saying that this function does not

exist.

Figure 12 Error to demonstrated that invalid function was invoked.

Query will often be used to read data out of the ledger and it will extract the data in key

value pairs. For queries to be syntactically correct they must use Mango query syntax which

is supported by Couch DB.

Finally, you have the main function which is where you execute this statement shim.start()

with an empty struct in go, this is used to set-up the communication between all the peer

that will hold a copy of the chiancode. Once the struct initialises the chaincode, if any

changes are made by executing new transactions they can be verified by the other peer

before being committed to the ledger. This function will remain same for any chiancode you

implement, and it required to start running your chiancode (Hyperledger, 2018).

Figure 13 Commands to deploy the network using Couch DB and CA.

Using these commands, I was able to change the underlying database from LevelDB to

CouchDB, which I decided I would use in my tools. Moreover, I was able to use the second

come to use the CA in my application. This proved to be critical, without this the NodeJS

application would not have been able to enrol the admin for the application to function

while interacting with the chaincode. This has made my system architecture in figure 5

possible to implement in reality.

 I have attempted to implement the application as I have discussed in the system

architecture of the E-voting system. To ensure all the functionality has been met. I will also

add the functions Init Invoke and query in the appendix.

Node SDK
This is the phase in which I start to use the Hyperledger Fabric Client SDK which is a module

in node where all the relevant modules required for this part of the application are

downloaded in a node modules folder. This will provide a way where it allows us to create a

network endpoint where the normal users can interact with the application that will extend

the functionality of Invoking and querying ledger.

31 | P a g e

The easiest way to implement or to learn about this is to use the examples provided by

Hyperledger community. These examples are available on GitHub. These dependencies need

to be recorded into the package.json file. To engage with the functionality extended by the

installed modules you must use require to import them in the files to use the modules.

Figure 14 Import form the Node modules to use the Hyperledger Fabric Client.

This will load the client and connect the peers to it to get the CA to generate the certificates

needed for the users for him to have the ability to invoke and query. The CA uses the http

protocol which I have mentioned in the tools I am using to build this network.

gRCP allows a client application to invoke methods in a server. In a gRCP systems you can

define specific methods that can be called remotely on the server. On the Server side it will

run a gRCP server to execute the request you have just sent, once it has the results from the

execution it will send it back to the client. (Google, 2018).

Figure 15 gRCP to add the peer and order to the network to initialise the channel.

The most difficult part for me was to establish the communication and to enrol the user. By

default, the blockchain network TLS was enabled. TLS allows secure communication

between the server and privacy for web the application is being built but since the

application will be using localhost it should not compromise the security of the system.

This caused issues when I was attempting to enrol the user because they did not have the

correct credentials to overcome this I turned the default TLS setting off in the blockchain to

be able to enrol the admin.

Moreover, for communication to work initialisation of the channel is important, to make

sure modularity and extensibility is achieved in all of this I did all of these functions in a

separate file. Network.js is the file which is responsible for setting up the network and this is

where the client and channel were initialised I had issue where there promises were being

overloaded and that lead to me to not have access to the client or the channel, so I couldn’t

execute any transactions. To deal with this issue I had to identify what was overloading the

promises and then resolve the last promise before returning the channel and the client. The

access to channel and the client was required to carry out Invoke and Query on the ledger.

Figure 16 Resolving the promises to ensure this data is
returned

32 | P a g e

The hardest part was for me to learn about the concept of promises and how to deal with

them. Another thing I had a challenging time with was finding the correct ports for the Peer

Order and CA so that I could connect them together. I had to look at the docker-

compose.yaml files to see the external port so I could connect the client to the port.

After establishing the network in the node js, to test if it operating I made a request object

by using the initialised channel I was able to run a query. Similarly, I was able to do the same

with invoke but I had to utilise the client to generate the transaction ID of the transaction.

I created separate helper functions to ensure the extensibility of the program. After creating

a function for a request object.

Figure 17 Implementation of the Request object to invoke and query the ledger.

I made this design choice because I could call the object whenever it was needed and the

parameters that are required by query for example chiancodeID, channelID the arguments

the function name and for the invoke request object it requires an additional value which is

transaction ID because it writes things to the ledger, so It needs a transaction ID.

Figure 18 Generation of the transaction ID used for invoke.

In the Invoke function the proposal is first sent to check to see if it is good proposal only

then is the transaction sent and then accepted and the transaction is committed to the

ledger once it has checked proposal is valid for the submission.

Figure 19 This checks the proposal transaction to make sure it is valid.

Express.js (NodeJS web application)
I used Express.js as a framework that would allow me to develop the REST API. Express.js

uses HTTP methods such as GET and POST. The functionality of the Node SDK and the

chaincode is accessible in the REST API so the application can include it. Any function within

the application where data is written onto the Blockchain it will be a POST request and for

33 | P a g e

querying the ledger it will be a GET request. All of this is achieved by using a router. All of

the data will be sent to the server on the server-side, the router will collect all the data and

pass to the corresponding function in the REST API which will then generate a request for

the correct function Invoke or Query will be called to carry out the transaction.

An example GET Request in my API would look like this.

Figure 20 Example GET request in the REST API.

POST:

Figure 211 Example POST request in the REST API.

In the GUI it will be done through AJAX so there is no need for constant reloading to see the

updates, However the POST request can fail form the client side when its being sent to the

server

Invoke is done by creating request and generating the transaction ID and sending the

request object and channel and client that it requires for the function to work from the API.

The results from a query will always be returned as a buffer or bytes so I used a function

that will Parse the data coming in from the query into JSON.parse() which makes it easier for

me to use the data.

Figure 22 Query in the node SDK which will query the ledger.

While I was developing the queries in the application, I found that if you ever query a

document or data in a document which does not exist it will return a null value. I think it will

be ideal for me to implement checks for null key or values that do not exist in CouchDB to

prevent error and then this can be conveyed to the users.

GUI Implementation
To implement my interface, I used pug which is a templating engine which is highly

compatible with Express. To make sure that the application was functional and interactive I

used the jQuery AJAX library. I have used the router plus the server that is in the REST API to

render the pages. Furthermore, to use the functionality in the API I then used the AJAX calls

to call the REST API endpoint to join the application to the blockchain network.

Example AJAX calls connection to the REST API will look like this

34 | P a g e

Figure 23 Example AJAX Call to establish a connection between the application and the REST API.

35 | P a g e

Testing
I wanted to discuss the result and my methods of testing my application to decide the

results and the success of achieving the requirements. Due to defining my functionality at

an early stage I had no idea of testing the functionality of smart contract and thus I had no

clear specification for testing.

My approach to Testing
As I was not aware of many ways to test the application I ended up resorting to manual

testing to see if the functionality was working as intended. At each stage I tested the

application for several reasons to test the systems Usability, functionality, and interface

testing. The test I carried out on the Fabric Network was to ensure the structure and the

usability of the project and to determine its interaction application. I did this to achieve

results that were correct and reliable. By testing each phase of the application, it reduced

the risk of the application failing and to improve the quality of my code therefore making it

easier to find the issues in the network and functions that were not performing as intended

so that they could be fixed.

Fabric Network Usability testing
when installing docker and all of the prerequisite tools alongside Hyperledger Fabric

samples. I want to see if I could generate the network to see if it was functional. I had

followed these commands form the From Hyperledger fabric docs ./bfyn.sh -m generated

followed by ./bfyn.sh -m up to bring the network up. The first time I was testing the

functionality of the network I had some issues where the tools such as cryptogen was not

found in the correct folder thus the network could not generate the genesis block which is

the first block on the blockchain. Then I had to change the structure and re-install the tools

to generate and bring up the Hyperledger Network.

Figure 24 Generates the certificates and genesis block for the blockchain using the cryptogen.

Subsequently to see execution of the smart contract I attempted to execute the example

chaincode provided in the Fabric samples chaincode directory. I executed the

chaincode_example2 on the network to view the full functionality of the network. This was

ideally where I started to encounter more errors in my structure because when you run the

chiancode you create a GO directory where the smart contract needs to be placed to be

executed for the network to interact with it. So, with my Installation of GO language the

folder was created in Root. Once this issue was identified I was able to create the Go folder

into the documents and then go in the src directory and then mount the Fabric samples.

After moving the project and bringing up the network again I was able to get the Peers to

36 | P a g e

install and instantiate the chaincode. I tested the example chiancode by executing invoke

and query transactions on it.

Once I could run the functions such as Init, Invoke and Query then I knew I could start to

define my own smart contract as it was ready for my application to be implemented. This

was the vital step for me to take at the beginning of the project otherwise I would not have

been able to test my application quickly and efficiently. This was done to set up the

development environment for the rest of the project so that the network was functional

henceforth it would only require minimal modifications to get my implementation of smart

contract running.

Smart Contract Testing
To test my smart contract, I used the dependencies such as the fmt.Println() to see the

values that were being return by the methods. Also, I was very reliant on docker as one of

my testing tools because I can used docker log to check the chaincode to see if the function

was invoked to visualise the outcome of it. Furthermore, if an error has occurred with the

chaincode I could use it to retain more information about the error by checking the peer

and Organisations container to pin point the reason that the error has occurred. Ideally this

was helpful when I was attempting to execute the query in the network to validate if the

syntax is correct. The write transactions were tested with the Fauxton API.

Figure 25 Docker command used to access a chaincode container.

This is the docker container where the code was being executed, the main the results are

seen by using the Fmt dependency.

NodeJS Application Functionality Testing
This is ideally where I was able to initialise my own network which interacted with the

blockchain network and to initiate the channels so that the transactions can be made. This

allowed me to test the rest of the smart contract that I had not been able to test. With this

the testing became easy as I was able to send transactions to peer0. In my network, I used

the console.log() to make sure that the correct results were retrieved. This also highlighted

that the results for some functions are being returned as bytes and then I was able to write

the code and address the issues that would not fulfil the requirements. Here I was able to

test all my requirements and test real life scenarios of how the system can be used and how

it should be used.

This was functionality testing through a separate file which I had created and stored

commands in, so I can see if the following sets of functionality were executed.

37 | P a g e

Figure 26 Displaying the submission of valid transaction.

To test the security and durability of the system I tested the network by adding duplicated

sets of data of which were not written to the database and error was printed out to inform

the user that this record already existed on the system

Figure 27 Example error generated for adding duplicate data.

Ideally, I used the NodeJS application to carry out functionality testing to check if the

application was performing the tasks correctly and that it was carrying out the intended

tasks. To further justify this, I would use docker to access the container where the execution

of the code has been taken place as well the peer that has executed the transaction to

ensure the intended result of the transactions. Finally, I would check the Fauxton API to

ensure that the data is retrieved and written in the correct format that it should be in.

Figure 28 Viewing the information recorded in the ledger.

38 | P a g e

This is to make sure that is actually being stored in the CouchDB and the correct is being

stored.

REST API Testing
The Rest API testing was a structured way to test the transfer of Information. I was

successfully able to use the Http protocols I had defined in the REST API and connect to the

API In Postman and supply the correct Information to see the data transfer then I would

open the Fauxton API to see whether the correct information was placed into and gotten

from the database to display into the webpage.

This was done to ensure that the data was routed to and from a correct path and results

were correct and working as expected. This also ensures that the system managed errors

better and it was easy to pinpoint the issues.

This is the Postman interface which I have used to test the REST API. This was an example of

it trying to send a GET request where the result came back as null.

Figure 29 Postman Testing screen of a GET request which generates has no results..

Interface Testing
I tested the interface manually to see if the interface was interacting with the underlying

blockchain platform and that data transfer was working as necessary and that there were no

unnecessary delays in timing. This testing involved checking the usability of the system and

especially the navigational functions as the data was sent to and from the application to the

API. I carried out this type of testing using Postman which enable me to see the request that

was sent and response that were coming back to ensure that the system was fully

functional. This also enables me to check the robustness of it and see how the users will

interact with the system.

39 | P a g e

All the functionality of the web application was tested using the localhost using the port

number 3000.

Figure 30 Testing of the web application on the localhost:3000

40 | P a g e

Evaluation
I wanted to evaluate my project to identify, if I have achieved my objectives that I

established in my initial project, to judge the overall development, the outcome of the

system and its functionalities. In my Initial set of requirements, I can see that I have

achieved most of the required functionalities. I have attempted to incorporate them when

implementing a smart contract accordingly that it offers an improved way to vote

considering the frauds that have happened in the current e-voting systems. Overall, I think

the systems has achieved the functionality it should have within the timeframe.

The system that I have created presents an extensible platform. There are many other

features that can be added to extend the platform to be completely safe and secure. I have

named a few in the future works section. By adding them I think it will enhance the security

of the system.

Nonetheless due to the amount of time, some difficulties in implementing the project and

development of the chaincode I have not been able to create all the system that is fully

distributed that handles user registration. There are still some limitations and steps that can

be taken further to make sure the system is fully secure and robust. In my evaluation I want

to analyse and evaluate the limitations and achievements of the project.

Functionality Fulfilment
I have accomplished a system which performs the functional requirements effectively and

efficiently, all functionalities were fulfilled and working as expected. The required

functionalities that I wanted to implement have been very successful for the proof of

concept of e-voting. What the application strives to show is that how users are able to

register their vote and how their votes will be counted accurately and reliably.

As I have said, all the transactions are being sent through a channel created by the orderer,

and the default name of that is mychannel, so when you have the network connected

fauxton API should show up at the port number 5894. This will show a database called

mychannel which will responsible for storing the documents. This enables me to do see the

state of the database and try and conduct rich queries for the documents that are currently

stored in there.

My primary goal was to assess and address issues that the current e-voting platform

proposed, moreover, how they could be solved by using Blockchain. While developing the

system I discovered that storing the users (voters) on ledger would make it challenging to

preserve the individual anonymity. Additionally, I found that by storing the users on the

ledger could result in identity fraud so to maintain the systems security and prevent fraud, I

made the design choice of not including the users on the blockchain. By following this

choice, I have designed the system such that it preserves the anonymity of the user on the

distributed ledger so that no one can see who they voted for beside the individual

themselves achieving one of the problematic functionalities.

41 | P a g e

Project Management & Technique
At the beginning as I wanted to follow the agile method development, I found development

practises that complemented the agile method which was feature driven development.

While Initially I had a very clear outline of what I wanted to achieve in the system and I had

defined clear goals and timeline definition in my project. By adhering to the goals that I

wanted to achieve it ensured that I was on track with my project and development and

aided me in achieving my functionalities. Due to this I had a very clear idea of what the most

complex functionalities will be before I started to implement them. I think most of the

timelines I had were estimated form preliminary research into the project and Blockchain

platform. This gave me estimates about the issues I should be expecting to arise making it

better to solve the complexities.

I had a few issues at the beginning of the implementation of the project even though I had

allocated enough time to be able to finish implementing that aspect of the project. This

delayed my project by several days, so I had to spend additional time working on getting the

issues resolved. Throughout the project I had run across many issues which I did not know

how to solve. For example, while I began my implementation into a windows platform I had

issues with Docker where the firewall of the Laptop would not let docker mount the images

which I have shown below to generate the network.

Figure 31 Images needed by docker to generate the Fabric network.

This issue was time consuming and I researched for this issue online but since no one had

experienced it I was not able to find any viable solutions. I had to result into speaking to

people to see if they had encountered this issue, because of the time restriction It was

42 | P a g e

suggested that it would be better to change the file system to Linux and to setup my project

on there. This is just one example of an issue that delayed me in my project.

I had another issue while I was implementing the chaincode to test if the business logic was

correct. Testing the applications logic could be easy, all I had to do was edit the script.sh file

to access the correct smart contract so it could be instantiated by the peers. Meanwhile

even though the scrip was edited it only allowed me to test the write functionality for the

ledger. I had spent quite a while to see why this issue would occur only to understand that a

block is created every second and read functions where reading the data before it was

written to the ledger. To test the logic and finish off the implementation of the rest of the

functionality I had to build a NodeJS app which allowed to test the read functionality

instantaneously.

 I think this practise became helpful because I could constantly re-iterate over the design

process to make the necessary changes. I think this was the most helpful in developing this

project. The ideas I wanted to implement became clear while I was progressively

developing the smart contract it was ideal to be able to constantly edit the smart contract to

make sure it had all the necessary requirements.

It was very beneficial to work and define the communication of the client and the network

in NodeJS. It was helpful to find other modules which were compatible and complementary

to this framework to build the application and GUI as it became much more simplistic to

connect everything together.

Technology Used in Development
The choice of tools and business logic that I used for it were very useful and was the most

effective and easiest way to implement the application. Now I will be analysing the

Technologies that was used and the results I was able to generate from them to see

whether they were effective or not.

GUI
The implementation of the web interface and its functionality were either done through

JavaScript , AJAX or pug. Pug was definitely an excellent choice because it’s a templating

engine for Express JS which allows me to create my application rapidly and to connect it to

the API. This was ideal because it aided me to produce the UI rapidly and efficiently. As I am

not focusing not creating the most visually appealing application this was the most efficient

solution.

By using this templating engine and linking it to JavaScript it allows me to update the

information and get the application interacting to the API plus the network with ease. AJAX

enables me to display the results without the needing to refreshing the page to display the

latest information because it handles auto update.

Chaincode
The core requirements for the system were to be implemented in the chaincode. This shows

how a blockchain can be used as an e-voting system to prevent the election ridging and

other types of fraud for sensitive matter such as e-voting. In an existing system for e-voting

43 | P a g e

and I-voting there have been many cases where a malware can be implemented to alter an

individual vote to influence the election either way.

This prototype of the system is designed to prevent just that. This system will allow a

government official to deploy a chiancode and setup candidates so that on the voting day as

users and voters log on to the system they can cast their votes and keep a track of each

individuals votes and their choices and gives the government a functionality to count the

votes to declare the results to the public. All of these modifications are made in real time,

since blockchain holds a history of the records I have extended the functionality to a user’s

voting history to show an individual their voting history.

To preserve the anonymity of a user and fraud prevention by the user, I have used hash of

the individual’s username and password to generate a hash. This was problematic to

implement properly because if a colon was missing or incorrectly placed it could have

created a collision compromising the security of the system. On the other hand, for the

candidate the key is the candidates party because there is only ever one elected candidate

for each party this is set as a key so that it can be accessible. By allowing the government

official to register a candidate but to not set the vote variable would reduce fraud.

When you view this on fauxton API the transactions are showing you the most updated

values. When the Vote is casted the counted value in vote document is set to false as it has

not been counted yet. After the election has been closed and votes have been counted, only

then it will be set to true this modification will show up on the fauxton. I have designed it so

that this way so that if a user does change their vote and chose another candidate that they

want to vote for their vote will not be counted twice. The functionality of counting votes is

only available after the voting for the users has been closed.

I have set it up this way because once a user has access to the system they can cast as many

votes as they want, they will have the ability to check their votes to see if they are happy

with their choices. Once the voting has closed their latest vote will be counted. They can

also see the history of their votes to see how they have changed their choices as the ledger

will generate its history.

To stop anyone from countless adding or editing the candidate the smart contract performs

checks to make sure that candidate is not already been setup form that party. To do this the

chaincode iterates over all the records for the candidates and checks to see if another

document id matches with this one and if they do, it sends and error back saying that a

person already exists for it . If there is no match, then it takes your request to the invoke

and writes it to the ledger.

This was all done to make sure the system could not be tampered with and to make sure

that individuals have less interaction with the system. The only problem I think needs to be

assessed is that as a government official has entered the details for setting up a candidate to

reduce the possibility of human error.

44 | P a g e

NodeJS SDK
I discovered this issue that I was not able to enrol the admin while I was implementing. I

decide this would be the best course of action to set TLS enable to false. However, if the

application was in production for general elections TLS would have to be enabled to ensure

that security of the system could not be compromised. Due to the time limitations and the

lack of resources I was not able to implement it with the TLS. In addition to that I did

confirm with the blockchain developer from Equinity and he reassured me that it should not

affect the security of the proof of concept system.

API
To test the application and its success I had to test the REST API and routes established in

the API, so I can ensure that correct data is sent and transferred to the API. To test the API, I

used Postman to test the transfer of data from postman to NODE SDK, so I could see if the

application would interact with the network, this was ideal as it cuts down the testing time

and I could test more effectively by saving the test to see whether they passed or failed and

the status of the transactions.

Testing
With choosing Feature driven development, I was able to test feature by feature and keep

iterating over the design to make the necessary changes need to meet the functionality and

to make sure they worked. I had to spend a lot of time manually trying to test it which was

not very effective but there aren’t way to test them using Unit tests. I think given more time

I would have liked to test the system in various different ways to make sure the system is

robust and will not break so easily.

45 | P a g e

Future Work
Overall, I think there are many ways this project can be expanded and improved further to

produce a fully functional and commercially viable product that the government can

implement. I think there are few features that I have outlined below that would help make

the system much more desirable.

Validation

I think it would be very useful to include validations In the Node SDK application when end

users are entering data a message could be shown to inform that the action they are waiting

for is finished. It will also be helpful to inform them that they have entered incorrect

information to help them correct that action. So that they can enter the correct information

which then make the record and the votes more correct and help make the system more

secure.

Access Level for Users

Currently the system has one user enrolled on it which actually has admin access which

means that they have the permission to interact with the blockchain giving all the users in

the system a prominent level of access to modify and see all of the transactions. In the

future I would like to set permissions for all levels of access such that when a user is

enrolled on the system they only have access to certain types of transactions and services in

comparisons to the admin. This will enable me to develop a hierarchical systems which

allows certain group of individuals certain privileges on the function to increase the systems

security this will make it easier to outline the functions and the logic that the individual can

access.

Tokens

To enhance the security of the system it would be better that once a user logs on they are

given an authorised token to which confirms their identity they would require their

authentication details as well to be able to cast a vote. This will ensure that if a user’s

password and username have been compromised the token would make sure that the user

authenticity and this could use to prevent identity fraud and prevent election fraud.

Detailed statistics

To improve and extend the systems analytical ability the blockchain can be used to record

the location data so you can identify where each of the votes are being casted form. By

doing this you can determine which constituency received the most vote in the county by

allowing the users the ability to visualise that in the map. This also lets the government and

the public to visualise who and how many people voted In the election.

The statistics that are being generated can also be used to personalise election campaigns

for the candidates to improve their current strategies. As each individual vote’s they could

be question and asked about why they are voting for this individual. Then machine learning

algorithms can be applied to decide the factors the general public looks at before voting for

46 | P a g e

a particular candidate. This information can then be used to personalise the campaign for

the candidate’s campaign.

Commercial Application

I think the application and the logic of the smart contract can be extended to be used in the

company elections where investors and the management have the ability to vote about the

issues such as pay rise of the individual or about the management. By incorporating the

logic by allowing them to vote not as a whole but in fractions and by adding this up to

determine whether the vote was in favour of or in against of the decision of this agenda.

Legislation

The blockchain can be extend so that a candidate when they are registered has the ability to

hold and view documents.

By doing this we can allow the candidates to upload their agenda and the legislation they

want to implement during their candidacy. In doing this the voting system can be used to

vote on the legislation the public wants the candidates to implement. This would enable the

candidate view and implement the legislation favoured by the majority of the public and not

determine what is in their or anyone else best interest. This will be allowing the government

and public to participate in more important legislation increasing the number of

referendums on general topics.

These are just some of the features I think can be used to extend the system and the

functionality that would make the e-voting system much better.

47 | P a g e

Conclusion
The main Aim of the project has always been to develop a proof of concept prototype which

will be a secure system which will reduce and prevent fraud prevention. I have done this to

address the issues that are in the current I-voting and e-voting systems. I have mostly

achieved the requirements that I defined to address the issue of election fraud.

To achieve this, I have developed a smart contract which would provide the correct business

logic that can be used to develop the secure system. I have achieved this because unlike the

I-voting system I have not used a centralised repository such as a server so that there is no

obvious vulnerability to the system. By recording transactions and verifying them with the

other nodes before the transactions is committed has numerous advantages one being that

if at any point one node was to fail another, the data written in the ledger will also be

available to view as the other peer nodes on the network retain their own copy of the

ledger and the transactions making the system robust.

This also makes the electric voting systems more reliable and secure where the votes could

only be accessed by their owners. I had to generate a hash this would ensure that if the

voter wanted to check their votes they would have to use their username and password

which no one else but them should have access to. Even if an attacker could have access to

this information the user can and should be able to view their voting history to ensure that

all the votes that are being written to the ledger are their own choices. This was ideal as it

becomes easy to identify vote manipulation and to address it as it is an invoke transactions

it can be traced and tracked in real time.

Blockchain is a traceable ledger, I used those functionalities to ensure the security of the

system, the ledger is also transparent to its contributing member it was very difficult to

ensure that an individual’s identity is anonymous thus hash had to be used to conceal the

user’s identity. This was the most effective way which would ensure no one will be able to

find each other.

Aside from the security to ensure that the correct data is obtained and written to the ledger

I have developed a REST API to ensure that correct data is sent to and from the application

this ensures that the correct business logic is called so it ensure that the system can function

more effectively and efficiently.

I also wanted to focus a bit on the modularity of the code and the extensibility of the

platform, I wanted to focus on this because this will make the process of error debugging

and will make it easier to add more features later.

I think blockchain platform could potentially be used to create a voting system which can be

integrated with existing systems and if more features where added to ensure the security

and to improve the system. I think the application can also be tested a bit better in terms of

stress testing and it scalability.

48 | P a g e

Reflection on learning
Overall this project was a very challenging for me, and while working on this project it has

taught me many value skills. One of the major skills I gained was project management

where I was working together with Equinity. So initially before I started to research into

what could be achieved with this project, I met with the person who has proposed this idea

to come up a set of specifications and ideas. Throughout the project I made sure to update

them on my progress and what I see the end product becoming. Furthermore, I also kept in

touch with my supervisor discussing my progress and any issues I was having in my project.

I have had a lot of support and exposure to resources from Equinity which made developing

the project a lot easier for me. As blockchain technology is an emerging topic, the problems

I have found were not easily comprehensible nor could they be found online. To solve them

I had to do a lot of research to identify and solve problems at hand. I had many issues while

establishing my development environment. One of the issues I was having is that on my

computer, docker was unable to mount the correct images for me to run the network. So, I

was able to go the blockchain developer who proposed an alternative solution which could

aid me in solving my problem. To solve this issue, I had to change the operating system to

Linux and setup my development again to overcome as Hyperledger was first developed in

Linux it had a bit more guidance on how to set things up. I think this was vital for me as it

helped me avoid the most common problems that are not available online.

I think everything I have programmed and achieved in this project was a big learning curve

for me because I had never used or worked with Hyperledger, Node SDK used for my

network endpoint and Express.js which I used to create the API and implement a hashing

function to preserve the anonymity of user on the system as I have before mentioned in the

background section. Even though this was a learning curve I found the demos more useful

than the documentation as It was not explained very well. One average I spent two days’

trying to understand to solve the issues that I experienced but while attempting to solve the

issue I learnt a lot about why this issue was happening and how to overcome it. One of the

things I found most difficult to program was Node SDK where I spent a lot of time trying to

initialise the channel and to setup the blockchain. I encountered several issues when I was

trying to distribute and modularise my code as each class I was working with in Node SDK

was returning promises. Since it was not resolved, the last promise it was leading to the

channel not being initialise properly which meant that I could not execute any transactions.

In duration of the project I have gained many major technical skills which could help in the

future. As all of these technologies and programming languages such a Go using the Node

and Express framework were something that I have never done before. Moreover, I learnt

debugging techniques I could use for when developing programs to get a better

understanding of the error. While I was developing the ChainCode it is very hard to be able

to tell why your ChainCode is not working so for that I would use the Fmt library to print out

results to see whether they are correct or not but to view the results I had to make sure to

open up the docker log for one of the peer containers to be able to see the results. When I

was comfortable with the programming languages and skills I started to modularise the

code so that it can be done efficiently.

49 | P a g e

Learning about the Hyperledger was another skill that I gained to see the use the distributed

system, to build the application on top of that. I also got a deeper insight into how

consensus is achieved and most importantly how blockchain technology operates. As I was

starting to develop the app in Node SDK and trying to configure the network to write data

and query data in the blockchain. While configuring the network I came across issues like

this because TLS was enable which meant that the admin was not being enrolled correctly.

In trying to solve this issue I learnt a lot about the blockchain network to correct the default

setting so that I could build my app.

If I must try and do this project again, I think I would spend more time on the design phase

of the system which I have not done by doing this I could make the requirements for the

system much clearer. So that less time needs to be spent on changing designs or modifying

the plan that is originally in place. I would also focus on the testing aspect a bit to try and

research ways in testing the ledger and each phase of my application. Preferably I would like

to conduct automated testing which already allows me to define tests and build the

application according to it reducing the time spent on testing and allowing me to effectively

test many more scenarios.

Due to time constraints I have not been able to focus on creating the most visually

appealing GUI and to ensure that next time I would allocate my time wisely so that I am able

to manage and have time to implement the extra functionality within the system. However,

while doing the project I have gained many skills that have improved the existing skills and

have given me new technical skills.

50 | P a g e

Bibliography
Agarwal, A. (2017, October 07). Fabric CA setup - client. Retrieved from Medium:

https://medium.com/mlg-blockchain-consulting/fabric-ca-setup-client-852136f6a63c

Berke, A. (2017, March 03). Technology. Retrieved from Harvard Business Review :

https://hbr.org/2017/03/how-safe-are-blockchains-it-depends

Bezgachev, V. (2017, July 22). Hyperledger Fabric in practise. Retrieved from Medium:

https://medium.com/@vitaly.bezgachev/hyperledger-fabric-in-practice-part-1-main-

components-and-running-them-locally-aa4b805465fa

Boucher, P. (2016, September). EPRS | European Parliamentary Research Service. Retrieved from

http://www.europarl.europa.eu/RegData/etudes/ATAG/2016/581918/EPRS_ATA%282016%

29581918_EN.pdf

Docker. (2018, January). What is Docker. Retrieved from Docker:

https://www.docker.com/whatdocker.

Express.js . (2018, April 23). Using template engines with Express. Retrieved from Express:

https://expressjs.com/en/guide/using-template-engines.html

Google. (2018, April). About gRPC. Retrieved from GRPC: http://www.grpc.io/about/

hyperldger Fabric . (2018, January). Retrieved from Github: https://github.com/hyperledger/fabric

Hyperledger. (2018, April). Architecture Explained. Retrieved from Hyperledger Fabric

Documentation: http://hyperledger-fabric.readthedocs.io/en/latest/arch-deep-dive.htm

Hyperledger. (2018, February). Building Your First Network. Retrieved from Hyperledger Fabric:

http://hyperledger-fabric.readthedocs.io/en/latest/build_network.html

Hyperledger. (2018, April). CA - Users Guide. Retrieved from Hyperledger :

http://hyperledgerdocs.readthedocs.io/en/latest/ca_setup.html

Hyperledger. (2018, February). Chaincode for Developers . Retrieved from Hyperledger Fabric Docs:

http://hyperledger-fabric.readthedocs.io/en/latest/chaincode4ade.html

Kobie, N. (2015, March 30). Why electronic Voting isn't secure -but may be safe enough. Retrieved

from The Guardian: https://www.theguardian.com/technology/2015/mar/30/why-

electronic-voting-is-not-secure

Koven, J. B. (2016, August 30). Block the Bote: Could Blockchain Technology cybersecure Election?

Retrieved from Forbes : https://www.forbes.com/sites/realspin/2016/08/30/block-the-vote-

could-blockchain-technology-cybersecure-elections/#1228ba572ab3

Lambert, L. (2017, May 26). Cryptocurrencies Blockchain E-voting Voting: A Bastion of Democracy.

Retrieved from markey Mogul: https://themarketmogul.com/blockchain-e-voting-

democracy/

Leetaru, k. (2017, June 07). How Estonia's E-voting system Could be the Future. Retrieved from

Forbes: https://www.forbes.com/sites/kalevleetaru/2017/06/07/how-estonias-e-voting-

system-could-be-the-future/#1b19bc73b950

Node Js. (2018, March). Node Js - Download page. Retrieved from Node Js: https://nodejs.org/en/

51 | P a g e

Raja, R. (2017, September 29). Chaincode on the Go. Retrieved from Medium :

https://medium.com/@ramSocializing/chaincode-on-the-go-smart-contracts-on-the-

hyperledger-fabric-blockchain-82dd61b3c669

Robertson, M. R. (2017, June 13). Russian Cyber Hacks on Us Electoral Systems Far Wider Than

Previoucly Known. Retrieved from Bloomberg:

https://www.bloomberg.com/news/articles/2017-06-13/russian-breach-of-39-states-

threatens-future-u-s-elections

sigoa, a. o. (2018, March 12). Express/Node introduction. Retrieved from Developer Mozilla:

https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs/Introduction

Snellinckx, J. (2017, September 22). Hyperledger fabric & couchDB . Retrieved from The Ledger:

https://medium.com/wearetheledger/hyperledger-fabric-couchdb-fantastic-queries-and-

where-to-find-them-f8a3aecef767

Softjourn. (2018, January 29). Fabric Chaincode vs Burrow EVM. Retrieved from Softjourn:

https://softjourn.com/blog/fabric-chaincode-vs-burrow-evm/

Strukhoff, R. (2016, NOVEMBER 14). Hyperledger Fabric . Retrieved from Altoros:

https://www.altoros.com/blog/how-hyperledger-fabric-delivers-security-to-enterprise-

blockchain/

W.Ambler, S. (2018, May). Feature Driven Development (FDD) and Agile Modeling. Retrieved from

Aglie modeling: http://agilemodeling.com/essays/fdd.htm

w3schools.com. (2018, May). AJAX Introduction. Retrieved from w3schools.com:

https://www.w3schools.com/xml/ajax_intro.asp

Walker, D. W. (2017-2018, February). Bitcoin. Retrieved from Learning Central :

https://learningcentral.cf.ac.uk/bbcswebdav/pid-4534148-dt-content-rid-

9473610_2/courses/1718-CM3202/Bitcoin.pdf

52 | P a g e

Appendix
Docker-compose-e2e.yaml

version: '2'

networks:

 byfn:

services:

 ca0:

 image: hyperledger/fabric-ca

 environment:

 - FABRIC_CA_HOME=/etc/hyperledger/fabric-ca-server

 - FABRIC_CA_SERVER_CA_NAME=ca-org1

 - FABRIC_CA_SERVER_TLS_ENABLED=false

 - FABRIC_CA_SERVER_TLS_CERTFILE=/etc/hyperledger/fabric-ca-server-

config/ca.org1.example.com-cert.pem

 - FABRIC_CA_SERVER_TLS_KEYFILE=/etc/hyperledger/fabric-ca-server-

config/CA1_PRIVATE_KEY

 ports:

 - "7054:7054"

 command: sh -c 'fabric-ca-server start --ca.certfile

/etc/hyperledger/fabric-ca-server-config/ca.org1.example.com-cert.pem --

ca.keyfile /etc/hyperledger/fabric-ca-server-config/CA1_PRIVATE_KEY -b

admin:adminpw -d'

 volumes:

 - ./crypto-

config/peerOrganizations/org1.example.com/ca/:/etc/hyperledger/fabric-ca-

server-config

 container_name: ca_peerOrg1

 networks:

 - byfn

 ca1:

 image: hyperledger/fabric-ca

 environment:

 - FABRIC_CA_HOME=/etc/hyperledger/fabric-ca-server

 - FABRIC_CA_SERVER_CA_NAME=ca-org2

 - FABRIC_CA_SERVER_TLS_ENABLED=false

 - FABRIC_CA_SERVER_TLS_CERTFILE=/etc/hyperledger/fabric-ca-server-

config/ca.org2.example.com-cert.pem

 - FABRIC_CA_SERVER_TLS_KEYFILE=/etc/hyperledger/fabric-ca-server-

config/CA2_PRIVATE_KEY

 ports:

 - "8054:7054"

 command: sh -c 'fabric-ca-server start --ca.certfile

/etc/hyperledger/fabric-ca-server-config/ca.org2.example.com-cert.pem --

ca.keyfile /etc/hyperledger/fabric-ca-server-config/CA2_PRIVATE_KEY -b

admin:adminpw -d'

53 | P a g e

 volumes:

 - ./crypto-

config/peerOrganizations/org2.example.com/ca/:/etc/hyperledger/fabric-ca-

server-config

 container_name: ca_peerOrg2

 networks:

 - byfn

 orderer.example.com:

 extends:

 file: base/docker-compose-base.yaml

 service: orderer.example.com

 container_name: orderer.example.com

 networks:

 - byfn

 peer0.org1.example.com:

 container_name: peer0.org1.example.com

 extends:

 file: base/docker-compose-base.yaml

 service: peer0.org1.example.com

 networks:

 - byfn

 peer1.org1.example.com:

 container_name: peer1.org1.example.com

 extends:

 file: base/docker-compose-base.yaml

 service: peer1.org1.example.com

 networks:

 - byfn

 peer0.org2.example.com:

 container_name: peer0.org2.example.com

 extends:

 file: base/docker-compose-base.yaml

 service: peer0.org2.example.com

 networks:

 - byfn

 peer1.org2.example.com:

 container_name: peer1.org2.example.com

 extends:

 file: base/docker-compose-base.yaml

 service: peer1.org2.example.com

 networks:

 - byfn

54 | P a g e

 cli:

 container_name: cli

 image: hyperledger/fabric-tools

 tty: true

 environment:

 - GOPATH=/opt/gopath

 - CORE_VM_ENDPOINT=unix:///host/var/run/docker.sock

 - CORE_LOGGING_LEVEL=DEBUG

 - CORE_PEER_ID=cli

 - CORE_PEER_ADDRESS=peer0.org1.example.com:7051

 - CORE_PEER_LOCALMSPID=Org1MSP

 - CORE_PEER_TLS_ENABLED=false

 -

CORE_PEER_TLS_CERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/cry

pto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/server

.crt

 -

CORE_PEER_TLS_KEY_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer/cryp

to/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/server.

key

 -

CORE_PEER_TLS_ROOTCERT_FILE=/opt/gopath/src/github.com/hyperledger/fabric/peer

/crypto/peerOrganizations/org1.example.com/peers/peer0.org1.example.com/tls/ca

.crt

 -

CORE_PEER_MSPCONFIGPATH=/opt/gopath/src/github.com/hyperledger/fabric/peer/cry

pto/peerOrganizations/org1.example.com/users/Admin@org1.example.com/msp

 working_dir: /opt/gopath/src/github.com/hyperledger/fabric/peer

 command: /bin/bash -c './scripts/script.sh ${CHANNEL_NAME} ${DELAY}; sleep

999999'

 volumes:

 - /var/run/:/host/var/run/

 -

./../chaincode/:/opt/gopath/src/github.com/hyperledger/fabric/examples/chainco

de/go

 - ./crypto-

config:/opt/gopath/src/github.com/hyperledger/fabric/peer/crypto/

 -

./scripts:/opt/gopath/src/github.com/hyperledger/fabric/peer/scripts/

 - ./channel-

artifacts:/opt/gopath/src/github.com/hyperledger/fabric/peer/channel-artifacts

 depends_on:

 - orderer.example.com

 - peer0.org1.example.com

 - peer1.org1.example.com

 - peer0.org2.example.com

 - peer1.org2.example.com

 networks:

55 | P a g e

 - byfn

Chaincode Main function

func main() {

 err := shim.Start(new(SimpleChaincode))

 if err != nil {

 fmt.Println("Error starting chaincode: " + err.Error())

 }

}

// Init initialises the states of the application.

func (t *SimpleChaincode) Init(stub shim.ChaincodeStubInterface) pb.Response {

 var err error

 err = stub.PutState("isVoting", []byte("false"))

 if err != nil {

 return shim.Error(err.Error())

 }

 return shim.Success(nil)

}

// Invoke calls other functions

func (t *SimpleChaincode) Invoke(stub shim.ChaincodeStubInterface) pb.Response

{

 function, args := stub.GetFunctionAndParameters()

 fmt.Println("invoke is running " + function)

 // Handle different functions

 if function == "openVoting" { // open the voting process

 return t.openVoting(stub)

 } else if function == "closeVoting" { //close the voting process

 return t.closeVoting(stub)

 } else if function == "initCandidates" { //create all the candidates

 return t.initCandidates(stub, args)

 } else if function == "castVote" { //cast the vote for the

 return t.castVote(stub, args)

 } else if function == "readData" { //read a voters

 return t.readData(stub, args)

 } else if function == "queryVotesByCandidates" { //find votes for a

particular candidates

 return t.queryVotesByCandidates(stub, args)

 } else if function == "getAllCandidates" { //find votes for a particular

candidates

 return t.getAllCandidates(stub, args)

56 | P a g e

 } else if function == "invokeCountingVotes" { //Count the votes all the

candidates

 return t.invokeCountingVotes(stub, args)

 } else if function == "getHistoryVote" { //get history of voter so see

vote modification

 return t.getHistoryVote(stub, args)

 } else if function == "queryByString" { //get the result of the query by

string

 return t.queryByString(stub, args)

 } else if function == "checkVote" { //get the result of the query by

string

 return t.checkVote(stub, args)

 } else if function == "" {

 return shim.Error("No function name given")

 } else if function == "test" {

 return shim.Success([]byte("Welcome!"))

 }

 fmt.Println("invoke did not find func: " + function) //error

 return shim.Error("Received unknown function invocation")

}

Chiancode query.

// ==

// queryByString - send a queryString to query any documents avaliable

// ===

func (t *SimpleChaincode) queryByString(stub shim.ChaincodeStubInterface, args

[]string) pb.Response {

 // 0

 // "queryString"

 if len(args) < 1 {

 return shim.Error("Incorrect number of arguments. Expecting 1")

 }

 queryString := args[0]

 queryResults, err := getQueryResultForQueryString(stub, queryString)

 if err != nil {

 return shim.Error(err.Error())

 }

 return shim.Success(queryResults)

}

Init.js file which initialises the network and enrols the users.

module.exports = () => {

57 | P a g e

var Client = require('fabric-client');

var CA_Client = require('fabric-ca-client/lib/FabricCAClientImpl.js');

var Channel = require('fabric-client/lib/Channel.js');

var User = require('fabric-client/lib/User.js');

var path = require('path');

var store_path = path.join(__dirname, 'key-store');

console.log(' Store path:'+store_path);

var client = new Client();

var channel = new Channel('mychannel', client);

var ca_client = null;

var user;

 return new Promise(function(resolve, reject) {

 Client.newDefaultKeyValueStore({ path: store_path

 }).then((state_store) => {

 client.setStateStore(state_store);

 ca_client = new CA_Client('http://localhost:7054');

 user = new User('admin', client);

 user.setCryptoSuite(ca_client.cryptoSuite);

 return ca_client.enroll({

 enrollmentID: 'admin',

 enrollmentSecret: 'adminpw'

 }).then((enrollment) => {

 console.log('Successfully enrolled admin user "admin"');

 return user.setEnrollment(enrollment.key,

enrollment.certificate, 'Org1MSP');

 }).then(() => {

 return client.setUserContext(user);

 }).catch((err) => {

 console.error('Failed to enroll and persist admin. Error: ' +

err.stack ? err.stack : err);

 throw new Error('Failed to enroll admin');

 });

 }).then((user) => {

 var peer = client.newPeer('grpc://localhost:7051');

 var order = client.newOrderer('grpc://localhost:7050');

 channel.addPeer(peer);

58 | P a g e

 channel.addOrderer(order);

 return channel.initialize();

 }).then(() => {

 resolve([client, channel])

 }).catch((err) => {

 console.log(err);

 });

 });

}

Invoke.js to execute the transaction against the ledger.

module.exports = (channel, client, request) => {

 var util = require('util');

 var return_status = {};

 return new Promise((resolve, reject) => {

 return channel.sendTransactionProposal(request)

 .then((results) =>{

 var proposalResponses = results[0];

 var proposal = results[1];

 var proposalHeader = results[2]

 let isProposalGood = false;

 if (proposalResponses && proposalResponses[0].response &&

proposalResponses[0].response.status === 200) {

 isProposalGood = true;

 console.log('Transaction proposal was good');

 } else {

 console.error('Transaction proposal was bad');

 } if(isProposalGood == true){

 var request = {

 proposalResponses: proposalResponses,

 proposal: proposal,

 header: proposalHeader

 };

 var transaction_id_string = tx_id.getTransactionID();

 var promises = [];

 var sendPromise = channel.sendTransaction(request);

 promises.push(sendPromise);

 let event_hub = client.newEventHub();

59 | P a g e

 event_hub.setPeerAddr('grpc://localhost:7053');

 let txPromise = new Promise((resolve, reject) => {

 let handle = setTimeout(() => {

 reject(new Error('Transaction did not complete

within 30 seconds'));

 }, 3000);

 event_hub.connect();

 event_hub.registerTxEvent(transaction_id_string, (tx,

code) => {

 clearTimeout(handle);

 event_hub.unregisterTxEvent(transaction_id_string);

 event_hub.disconnect();

 return_status = {event_status : code, tx_id :

transaction_id_string};

 if (code !== 'VALID') {

 console.error('The transaction was invalid, code =

' + code);

 reject(new Error('Problem with the tranaction,

event status ::'+code));

 } else {

 console.log('The transaction has been committed on

peer ' + event_hub._ep._endpoint.addr);

 resolve();

 }

 }, (err) => {

 reject(new Error('There was a problem with the

eventhub ::'+err));

 });

 });

 promises.push(txPromise);

 return Promise.all(promises);

 } else {

 //console.error('Failed to send Proposal or receive valid

response. Response null or status is not 200. exiting...');

 Promise.reject(new Error('Failed to send Proposal or receive

valid response. Response null or status is not 200. exiting...'));

 }

 }).catch((err) => {

 throw reject(return_status)

 })

 }).then(() => {

 return resolve(return_status);

 })

}

60 | P a g e

Query.js to read data from the ledger.

module.exports = (channel, request) => {

 return new Promise((resolve,reject) => {

 // send the query proposal to the peer

 channel.queryByChaincode(request).then((query_responses) => {

 return resolve(JSON.parse(query_responses));

 }).catch((err) => {

 throw reject("Error");

 })

 });

}

